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A Gravity Model for Migration with Spatial Effects

Giada Andrea Prete∗

Abstract

The aim of this paper is to suggest the estimation of a migration gravity model taking into account the

presence of spatial interdependence between country-pairs. Considering as baseline the Random Utility

Maximization Model, we discuss two fundamental issues that arise in estimating gravity equation in its

log-linearized form through OLS: the presence of heteroskedasticity and the existence of zeros in migra-

tion data. Following Santos Silva and Tenreyro (2006), we propose the estimation of migration gravity

models by using a Poisson Pseudo-Maximum Likelihood estimator (PPML) which is able to handle the

mentioned issues and consequently leads to consistent estimates. Moreover, in order to capture spatial

interdependence, we introduce a directed contagion effect, by using the approach suggested in the work

of Kapetanios et al. (2014), which endogenously determines the neighbourhood or similarity between

units according to a specific concept of distance through a threshold regime selection mechanism. In the

empirical application, we find evidence of the presence of a diffusion effect in migration flows between

different country-pairs in the context of European Neighbourhood Policy (ENP).

Keywords: Gravity models; Migration; Poisson Pseudo-Maximum Likelihood; Spatial effects.

JEL Classification: C33; F22.

1. Introduction

A lot of socio-economic phenomena have been explained by gravity equations. The instrument of New-

ton’s law of gravity has been borrowed from physics and extended to investigate empirically the determinants

of the movement of goods and services, capital and people. A general formulation of the gravity model as-

sumes:
∗University of Salento, Department of Economic Sciences, e-mail: giadaandrea.prete@unisalento.it

1



Ti j =
f (Ri j,Ai j)

f (Di j)

where the bilateral flows between country i and country j, Ti j, are a function of some repulsive or push

factors, Ri j, and of attractive or pull factors, Ai j, given by the size of the economy of the involved countries,

and an inverse function of the distance between origin and destination countries, Di j (Patuelli et al. 2013).

According to this specification, the determinants of migration can be distinguished into two big sets: push

factors refer to all those elements which drive people away from their origin place, while pull factors repre-

sent a complex of attractive conditions which generate a favourable environment in the destination country.

The function at the denominator corresponds to the costs that people have to deal with when they decide to

move.

The attention on migration patterns has been addressed first by the seminal works of Ravenstein (1985,

1989) who traced some “laws of migration” which appear to guide all migratory movements. By looking at

European and American migration, he observed that important determinants in people movements are due

to the desire of human being to progress in social and economic conditions, to reach a more remunerative

occupation, but this need is driven by the immediate neighbourhood of the destination place. Therefore,

distance plays a crucial role in determining the mass of people moving from country to country.

For sure, thanks to the contribution of Tinbergen (1962) a gravity specification has been used to explain

international trade flows. After him, Anderson (1979) presented a first theoretical justification for the gravity

model based on constant elasticity of substitution (CES) preferences and goods that are differentiated by

region of origin. Bergstrand (1989) and Deardoff (1998) preserved this structure of preferences and recon-

sidered the role of technology in terms of monopolistic competition and Hecksher-Ohlin structure. The two

major contributions for theoretical microfoundations on gravity models are due to Anderson and Van Win-

coop (2003,2004) and Beine et al. (2016). In the framework of general equilibrium gravity model, Anderson

and Van Wincoop (2003,2004) developed a method which gives efficient and consistent estimates of gravity

paying particular attention on trade barriers, and applied the theoretical model to solve the McCallum’s bor-

der puzzle problem. In particular, this “border effect” refers to a situation in which there is higher volume

of trade within a country compared with the volume of trade across the country’s borders. On the other

hand, Beine et al. (2016) provide an overview of the estimation of gravity models through Random Utility
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Maximization models, which is able to describe the location decision problem that individual face to derive

the expected probability to migrate according to their utility function. Both, Anderson and Van Wincoop

(2003) and Beine et al. (2016) noticed that the specification suggested by the economic literature presents

some drawbacks. In particular, these models ignore the fact that agents could be heterogeneous with respect

to the perceived cost of migration and could be sensitive to variations in the attractiveness of alternative des-

tinations. So that, in order to solve this trouble, the specification of the gravity equation should be rearranged

in order to account for multilateral resistance terms.

The multilateral resistance (MLR) problem is defined as a form of bilateral trade barrier relative to

average trade barriers that the pair of countries face with all the other partners. Following Ramos (2017), the

concept of MLR is “related to the influence of third countries in determining migration flows between two

particular countries”. The traditional approach to bring out the multilateral resistance (MLR) effect is to take

into account some fixed effects, in the specification of the gravity equation.

Ortega and Peri (2013) tried to control for MLR by including in the gravity model specification origin-

year fixed effects, while Beine and Parsons (2015) include destination-year fixed effects. As explained by

Ramos (2017) other more complex contributions have been proposed in literature. In the specification of

Beine et al. (2016), the authors consider the presence of a time-invariant fixed effects for country pairs, so

called dyadic effects and time effects to account for common unobserved shocks. The dyadic term gives

the same contribution as time invariant variables that expresses a bilateral link, such as distance or dummies

about common language or common borders.

In considering a more complex structure of the gravity equation model, it’s important to evaluate the

work of Bertoli and Moraga (2013) who introduced the cross-sectional averages of the dependent variable

and of the regressors combined with dyadic fixed effects. This approach was defined with the Common

Correlated Effects (CCE) estimator developed by Pesaran (2006).

In the same field, Serlenga and Shin (2007,2013) modeled the presence of multilateral resistance and

cross-sectional dependence by referring to the studies of Pesaran (2006) and Bai (2009). Moreover, Behrens

et al. (2012) consider the cross-sectional correlation between trade flows and error terms implemented in a

spatial econometric framework.

This tendency of the existing literature to deal with the presence of unobserved and time-varying multilat-

eral resistance and bilateral heterogeneity, controlling in some cases for cross sectional dependence, has been

carried on by Mastromarco et al. (2016). In particular, they conjugate the factor-based approach adopted by
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Serlenga and Shin (2013) and the spatial-based techniques used in Behrens et al. (2012) in order to determine

the prominent role of Euro’s trade effects. The study reveals the importance to take into consideration the

historical and multilateral perspective of bilateral trade flows, without focusing only on the isolated shock

induced by the monetary union. Additionally, Gunella et al. (2015) evaluated the Euro impact on trade on

a dataset over 1960-2008 for 91 country-pairs of 14 EU countries by using observed and unobserved factors

which were allowed to be cross-sectionally correlated in order to control for time-varying MLR.

In light of the above, the spatial techniques have a great relevance in disclosing forms of interdependence

between countries in a dyadic setting. As considered in Neumayer and Plümper (2010) “what one unit does

in relation to the other units, with which it forms a dyad, will often influence and be influenced by the

relations of other dyads”. In their work, Neumayer and Plümper tried to categorize different types of spatial

effect modeling in both directed and undirected dyadic data. These forms of contagion can be combined with

different specifications of the weighting matrix. When we talk about directed dyadic data we are referring to

the interaction between two individual units forming a pair. The interaction between the units initiates with

unit i (source country) and is directed towards j (target or destination country). It means that externalities

could come from dyads which are different from the specific observed pair or by splitting the dyad in its two

parts, i.e. the contagion effect could also rise from other sources or other targets. Generally, these forms of

spatial interdependence are included in the model specification using a spatial lag of the dependent variable,

which concerns the volume of migration flows between country-pairs. In explaining these phenomena of

spatial diffusion or contagion, the authors followed the example examined by Elkins et al. (2006) who

argued that the spread of Bilateral Investment Treaties (BTI) is driven by international competition among

potential host countries for Foreign Direct Investment (FDI). In order to assess the strength of competition

and cultural emulation, Elkins et al. (2006) constructed, on the basis of the theoretical framework traced

in a previous work (Elkins and Simmons, 2005), a series of spatial lags able to capture the behaviour of

neighbours.

The spatial lag is generally given by a N×N×T spatial weight matrix W that maps the distances between

units for each year, multiplied for the lagged dependent variable for all countries other than a generic country

i.

In a dyadic setting, as argued also by LeSage and Pace (2008), the unit is represented by the country-

pair i j so that the weight is associated to each couple of observations. In particular, the probability that

people move from country i to country j depends on the weighted sum of all other migration flows existing

4



between source countries k and destination countries m, where the unique restriction is that the excluded

dyad is exactly the specific couple i j. This means that the dyad which contributes to the contagion effect

may contain alternately the same source country i or the same destination country j. Using the formalization

adopted in Neumayer and Plümper (2010) and ignoring the time dimension, the spatial variable is:

yi j = ρ ∑
km 6=i j

ωykm + εi j

where ρ is the spatial autoregressive parameter associated to the spatial lag ∑km 6=i j ωykm which consists

of a spatial weighting matrix ω and the temporally lagged value of the dependent variable in all country-pairs

km, ykm .

A part from the traditional spatial techniques here considered, Kapetanios et al. (2014, hereafter KMS)

developed a general econometric modeling framework which allows to take into account the influence of

peer effects. Based on the idea that economic agents consider the views and behaviours of those around

them and aggregate them in order to form their own view, this approach allows to introduce in the model an

interaction term of neighbouring units. The key feature in this class of models is that the computation of this

spatial term is unit-specific; it takes unit-specific aggregate which determines the closeness of units through a

threshold mechanism. The purpose of this approach is twofold: it allows cross-sectional dependence to arise

endogenously and it captures different kind of links within units. In this context, the methodology proposed

by KMS (2014) represents an innovation in the empirical literature of migration and so it constitutes an

alternative to the usual spatial econometric techniques in capturing the diffusion or contagion effect which

characterizes the connection across countries.

To formalize this idea, we consider a sample of N units given by country-pairs i j, observed for T periods

and we specify the spatial variable as:

yi jt =
1

hi jt
∑

km6=i j
`(|d| ≤ r)ykm(t−1)

with hi jt = ∑km 6=i j `(|d| ≤ r), where yi jt represents the migration flow within a specific country-pair,

denoted with i j, at time t which is influenced in some nonlinear fashion by the cross-sectional average

of lagged flows of a selection of neighbouring country-pairs, ykm(t−1), identified through a specific value

assigned to the threshold parameter r according to a constraint applied on a certain measure of distance d.
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The concept of neighbourhood is associated to distance in geographic terms, since we suppose that similar

behaviour in migration flows are driven by similar distances between different country-pairs.

Once considered the problem of multilateral resistance and contagion effects, it’s important to evaluate

how to estimate the gravity equation. The primary and more popular estimation methodology is the ordinary

least square (OLS) estimator.

The general gravity model for migration is given by:

Fi jt = eζit eχ jt Xβ1
i jt Dβ2

i j F̃β3
i jt εi jt (1)

where ζit and χ jt are destination and origin specific fixed effects, Xi jt is a vector containing the covariates

of interest, such as the “mass” of source and destination countries, Di j is a distance variable, F̃i jt is the spatial

interaction term and εi jt is an error factor assumed to be statistically independent of the regressors.

The traditional approach of estimation is to consider the log-linearized specification of equation (1) and

to estimate the parameters of interest by ordinary least squares (OLS):

ln(Fi jt) = ζit +χ jt +β1 ln Xi jt +β2 ln Di j +β3 ln F̃i jt + ln εi jt (2)

as underlined by Silva and Tenreyro (2006), Tenreyro (2007) and Egger and Staub (2016), the OLS

estimation will only be consistent if and only if the following condition is fulfilled:

E[ln εi jt |ζit , χ jt , ln Xi jt , ln Di j, ln F̃i jt ] = 0

It is very unlikely that εi jt is independent of the countries’ mass and of the bilateral distances, because

according to the economic theory the error term is generally heteroskedastic. Therefore, the OLS method

could lead to biased estimates.

Secondly, in the case of country-pairs with zero migration flows, these are dropped out of the sample as

a result of logarithmic transformation and this could be a source of additional biases.

Therefore, the Poisson Pseudo-Maximum Likelihood (PPML) represents a valid alternative to OLS as

suggested by Silva and Tenreyro (2006) for consistent estimation of the parameters of the gravity model and

additionally, it solves the problem of zero migration flows because the dependent variable is taken in levels,

instead of logarithmic terms.
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In particular, the parameters in equation(1) can be estimated using the fact that the conditional expecta-

tion of Fi jt , with respect to the set of covariates Zi jt = (ζit , χ jt , Xi jt , Di j, F̃i jt), can be written as the following

exponential function:

E(Fi jt |Zi jt) = exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β3 ln F̃i jt ] (3)

This implies the following:

Fi jt = exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β

′
3 ln F̃i jt ]+ εi jt (4)

where εi jt is the remainder error term in additive form.

This approach has been supported also by other authors. For instance, Henderson and Millimet (2008)

tried to estimate gravity models in both log-linearized terms and in levels, comparing parametric and non-

parametric structures. They show that, despite the added flexibility of nonparametric models, the PPML

specification in its parametric form offers equally or more reliable in-sample and out-of-sample forecasts.

In this work, we propose an application of the methodologies described above on the RUM model spec-

ified by Beine et al. (2016) and discussed also by Ramos (2017), applied to a dataset which extends the one

used by Ramos and Suriñach (2017) in terms of time. In their paper, they analyzed past and future trends of

migration flows between the European Union (EU) and the European Neighbouring countries (ENC), con-

sidering the fundamental determinants which attract extra-EU citizens towards EU members. In this paper,

we consider the determinants of unidirectional migration flows from ENC to EU countries over a period of

18 years.

Therefore, section 2 focuses on the RUM model specification for gravity models of migration, the PPML

estimation method, considering the drawbacks in the use of the traditional least square estimator, and the

KMS contribution in determining the diffusion effect. Section 3 presents the ENC-EU dataset and provides

a discussion of the main empirical results, while section 4 offers some concluding remarks.
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2. The Model

2.1 The RUM Model

To the best of our knowledge, the Random Utility Maximization (RUM) model represents the more

considerable attempt to draw the micro-theoretical basis for the estimation of gravity equations in the context

of migration analysis.

Following Beine et al. (2016) and Ramos (2017), the RUM model of migration describes the utility that

a generic agent h located in country i at time t−1 gets by moving towards country j belonging at a specific

choice set B at time t as:

Uhi jt = wi jt − ci jt + εhi jt (5)

where wi jt represents a deterministic component of utility, ci jt is the cost of moving from i to j between

time t−1 and t and εi jt is the individual-specific stochastic error term.

The choice about the distribution of the stochastic error term εi jt affects the expected probability of

individual s to maximize her utility in moving from her origin country to another one. Specifically, if we

assume that the error term is i.i.d. as in Grogger and Hanson (2011), and we consider the axiom of irrelevance

of alternative destination effects, as shown in McFadden (1974), we rewrite the expected probability to

migrate from country i to country j as:1

E(pi jt) =
ewi jt−ci jt

∑m ew jmt−c jmt
(6)

where m represents any destination country belonging to the choice set B.

Since the gross migration flow Fi jt from country i to country j at time t is:

Fi jt = pi jtsit

where si jt is the stock of population residing in the source country i at time t, we can derive from

equation (6) the expected gross migration flow as the product of the stock of population at time t by the

1McFadden (1974) consider an axiom of independence of irrelevant alternatives introduced by Luce (1959) “which states that
the relative odds of one alternative being chosen over a second should be independent of the presence or absence of unchosen third
alternatives”. He shows that in empirical analysis, when the utility function is additively separable as in our case, the multiple choice
of selection probabilities can be written in terms of binary odds as represented in equation (30).
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expected probability E(pi jt):

E(Fi jt) =
ewi jt−ci jt

∑m ew jmt−c jmt
sit (7)

Assuming that the deterministic component of utility, wi jt does not vary with the origin country i, equa-

tion (7) can be reduced to resamble the traditional gravity equation as:

E(Fi jt) = φi jt
x jt

Ωit
sit (8)

where: x jt = ew jt represents the attractiveness of destination country j at rime t, φi jt = e−ci jt is the ac-

cessibility of destination country k for migrants coming from i at time t and it has a negative impact on

migration flows. The term Ωit = ∑m ew jt−ci jt xmt represents, according to Small and Rosen (1981), the expo-

nential vale of the expected utility for agent i of choosing a different destination location or not migrating,

that is opting for the source country i. Therefore, Ω is strictly related to the concept of multilateral resistance

to migration, since migration flows could be influenced not only by the attractiveness and the cost to move

to the destination country j but also by the attractiveness of alternative target countries.

The stochastic formulation of the above gravity model in (8) implies an error term εi jt , with E(εi jt) = 1,

so that:

Fi jt = φi jt
x jt

Ωit
sitεi jt (9)

Looking at the estimation issue, as highlighted in Beine et al. (2016), the gravity model derived from

the RUM model can be estimated in two different ways. In a first case, the dependent variable is the level of

bilateral gross migration flows Fi jt . In a second case we can look at a ratio qi jt of choice probabilities defined

as the ratio at time t between the expected migrants from country i to country j, E(Fi jt), and the expected

stayers of country i, E(Fiit), that is:

qi jt =
E(Fi jt)

E(Fiit)
= φi jt

x jt

xit

where x jt and xit represent, respectively the pull factors of destination country j and source country i.

Using qi jt as dependent variable means estimating the following OLS model where the regressors are
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expressed in logs:

qi jt = ln φ + ln x jt − ln xit + ln
(

εi jt

εiit

)
(10)

so that, the ratio of choice probabilities, qi jt , is positively related to the attractiveness and accessibility

of country j but negatively related to the convenience not to migrate. The focus of this specification should

relate the error term, since the OLS estimator is consistent only if E[ln(εi jt/εiit)]=0

In the original RUM model, we assume that the error term εi jt is i.i.d. and that its expectation E(εi jt) = 1,

but this doesn’t imply that the OLS estimator of the log-linearized model is not biased. As explained by

Santos Silva and Tenreyro (2006), the expectation on the logarithm of a random variable depends both on

its mean and on higher-order moments of the distribution. In particular, if εi jt is log-normally distributed,

with E(εi jt) = 1 and variance σ2
i jt , it follows that E[ln εi jt ] =−1

2 ln(1+σ2
i jt). Therefore, if we consider that

the error term is heteroskedastic, since its variance depends on the regressors of the gravity equation, this

implies that the expectation on ln(εi jt/εiit) also depends on the regressor. Hence, the traditional OLS method

leads to inconsistent and biased estimates. Another problem occurs when migration flows between different

pairs are exactly equal to zero. In the presence of zero-observations of the dependent variable, when we take

the logarithm of migration flow, in order to apply the OLS estimator, we should consider a reduced sample

of non-zero observations, which could be another source of misleading results. In particular, the exclusion of

zero-observations could lead to the so called sample selection bias that results from a non-random sampling.

The proposed solution is to estimate the model with Poisson Pseudo-Maximum Likelihood (PPML), a

technique which requires weaker assumptions than OLS in order to get consistent estimates. In general, the

Poisson distribution is used for count data models, but it could be also applied more generally to nonlin-

ear model such as gravity, since we are dealing with a pseudo-maximum likelihood (PML) estimator. In

the PML estimator, “we maximize the log-likelihood function by equating its derivatives to zero” (Greene,

2003). As explained in Santos Silva and Tenreyro (2006), the consistency of the PPML results depends

solely on the correct specification of the gravity equation: i.e. on the regressors included. In particular, the

PPML estimator can accommodate for the presence of fixed effects as in the traditional OLS regression, con-

sidering origin-time dummies and destination-time dummies in order to account for MLR. By construction,

the dependent variable is expressed in levels, thus this estimator is able to deal with the presence of many

zero values of bilateral gross migration flows. The PPML estimator performs well even in presence of zeros
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in the data, and allows to overcome a strong limitation of the traditional OLS. Indeed, in OLS, since the

logarithm of zero is not defined, all those observations equal to zero are dropped from the dataset. Severe

biases could arise from an analysis of the reduced dataset, so the use of PPML is highly recommended in

this case.

Apart from being consistent with heterogeneity in the propensity to migrate and in the presence of zero

values in migration flows, the PPML displays another desirable property: the interpretation of the coefficients

is undemanding and follows the classical interpretation of OLS coefficients.

In the next section, we will explain the origin of PPML estimator and its basic assumptions, which make

it a desirable approach for dealing with gravity models.

2.2 The Poisson Pseudo-Maximum Likelihood (PPML) Specification

As explained by Santos Silva and Tenreyro (2006), when we consider constant-elasticity models as the

economic theory of gravity models suggests, the link between the generic response yi and the covariate xi is

of the form:2

yi = exp(xiβ ) (11)

where the function exp(xiβ ) is interpreted as the conditional expectation of yi given xi. Since this relation

yi = exp(xiβ ) holds on average but not for each observed i, an error term εi given by yi − exp(xiβ ), is

associated with each i. Therefore, the stochastic model can be formulated in two equivalent representations

with additive or multiplicative error terms, as:

yi = exp(xiβ )+ εi = exp(xiβ )ηi j (12)

with yi ≥ 0 and the error terms which are mean-independent of the covariate, i.e. respectively: E(εi|xi) =

0 and E(ηi|xi)=1, where ηi = 1+ εi/exp(xiβ ).

If we consider the OLS estimate of the model with multiplicative errors by taking natural logarithms of

both sides of equation (12) :

ln yi = xiβ + ln ηi

2For reasons of simplification, we consider a single covariate xi

11



in order to obtain consistent estimates of β , it is necessary that the conditional expectation of the error

in logarithmic terms does not depend on the covariate, i.e. E(ln ηi|xi) = 0. This condition is met only if

εi = exp(xiβ )vi where vi is a random variable statistically independent of xi, alongside ηi = 1+vi. As stated

in Santos Silva and Tenreyro (2006), when the condition of statistically independence of ηi is matched, the

conditional variance of the response variable, V [yi|xi] is proportional to exp(2xiβ ). However, it’s not possible

to derive this information from the economic theory, indeed we can infer some information from the data.

Since we said above that yi can assume non-negative values, it means that if the conditional expectation

on the response yi tends to zero, the associated probability also approaches 0 and the conditional variance

V [yi|xi] tends to vanish. On the contrary, if the conditional expectation is large, the correspondent variance

is high. The heteroskedasticity of the conditional distribution of the error term can be a nontrivial problem

in the estimation of this type of models. Therefore, the log linear model estimated trough OLS could lead

to seriously misleading results, due to the unrealistic assumption that the conditional expectation of ln yi is a

linear function of the covariates.

A possible solution to this is the use of a non-linear least squares estimator (NLS) as done by Frankel and

Wei (1993) in the case of a constant-elasticity model for international trade. In particular the NLS estimator

is defined as:

β̂ = arg min
β

n

∑
i=1

[yi− exp(xiβ )]
2

and the set of first-order conditions (FOC) is given by: ∑
n
i=1

[
yi− exp(xiβ̂ )

]
exp(xiβ̂ )xi = 0.

The NLS estimator presents a drawback: it ignores heteroskedasticity. This is due to the fact that the set

of FOC gives more weight to noisier observations, that is to the observations where exp(xiβ̂ ) is large, hence

a small number of observations of this type could heavily affect the efficiency of the NLS estimator. The

problem could be solved by using a weighted non-linear least square which will be possible if and only if the

form of the conditional variance V [yi|xi] is known. Robinson (1987) proposed a nonparametric generalized

least squares estimator which account for heteroskedasticity, which has been applied by O’Hara and Parmeter

(2013) for handling heteroskedasticity to data on professor rankings obtained from RateMyProfessors.com.

However this approach has never been adopted as a standard tool by researchers.

Therefore, Santos Silva and Tenreyro (2006) discuss in their paper about a more efficient estimator than

the NLS without using nonparametric regression and assuming that the conditional variance V [yi|xi] is simply
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proportional to the conditional mean E(yi|xi). Under this hypothesis and as explained further, the considered

set of FOC is:

n

∑
i=1

[
yi− exp(xiβ̃ )

]
xi = 0 (13)

The estimator based on this set of equation is called Poisson Pseudo-Maximum Likelihood (PPML)

estimator, it gives the same weight to all observations under the assumption of proportionality between

E(yi|xi) and V [yi|xi]. It is more efficient than the standard NLS estimator and moreover it needs only a

correct specification of the conditional mean E(yi|xi) = exp(xiβ ) in order to be consistent.

The PPML regression is considered as a special case of nonlinear models in the class of Generalized

Linear Models (GLM). In order to understand how it works, we propose below a description of the structure

of these models as proposed in the book of Farhmeir and Tutz (2013) and in the paper of Egger and Staub

(2016).

The Generalized Linear Models (GLM) are based on the fact that:

i) the covariates x could be linked in a nonlinear fashion with the response variable y;

ii) the variance of the error term could be not constant (heteroskedastic);

iii) the distribution of the response function could be not normal.

Specifically, GLM specification considers two assumptions:

1) a distributional assumption: we assume that yi are conditionally independent, given the covariate xi,

and the conditional distribution of yi belongs to a Linear Exponential Family (LEF), which is a family of

probability measures, with conditional expectation E(yi|xi) = µi;

2) a structural assumption: the link between the linear predictor γ = xiβ and the expectation µ is not

linear. It is expressed by an invertible function g called link function, able to connect γ and µ in the following

way:

µ = g−1(xiβ ) = g−1(γ)

where γ = g(µ), e.g. for the Poisson γ = log(µ), so that µ = exp(xiβ ).

Therefore, a GLM is characterized by the type of the exponential family (EF), the response or link

function g and the covariate x.
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The generic density function related to these LEF is:

f (yi|θi,ψ,ωi) = exp
{(

ωi

ψ
(yiθi−b(θi)

)
+ c(y,ψ,ωi)

}

where θ is the canonical or natural parameter, ψ is the dispersion parameter, b(·) and c(·) are specific

function depending on the type of EF and ω is a weight that for ungrouped data, where i = 1, ... , n, is equal

to 1.

For such a random variable, assuming ωi = 1, the defined log-likelihood will be:

l(θi) =
yiθi−b(θi)

ψ
+ c(yi,ψ)

and the score function, defined as the partial derivative of the log-likelihood function with respect to the

set of canonical parameters θi, is:

s(θi) =
∂ l(θi)

∂ (θi)
=

yi−b
′
(θi)

ψ

Taking the expected score and imposing it equal to zero, we obtain the following FOC:

E [s(θi)] =
E(yi)−b

′
(θi)

ψ
= 0

The set of parameters θi is a function of the mean µi , i.e. θi = θ(µi), which, according to the chosen EF

is determined through the relation µi = b′(θi). Furthermore, as the structural assumption on GLM suggests,

the mean of the response yi, µi, is specified as a function of a linear index of the considered set of covariates

xiβ , that is µi = g−1(xiβ ). The form of the link function for the Poisson distribution applied on gravity is a

log-link, as previously defined.

The second important result of the likelihood theory, as suggested in Egger and Staub (2016), is the

derivation of the variance function. By defining the Hessian of a LEF random variable as follows:

H(θi) =
∂ 2l(θi)

∂θ 2
i

=
−b

′′
(θi)

ψ

and considering the information matrix equality V [s(θ)] =−E [H(θ)], we can write:
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E
[
yi−b

′
(θi)
]2

ψ2 =
b
′′
(θi)

ψ

which is equivalent to V (yi) = b
′′
(θi)ψ.

The set of parameters θ is estimated by maximizing the sample pseudo-likelihood function:

lsample(β ) =
n

∑
i=1

yiθi−b(θi)

ψ
+ c(yi,ψ)

with corresponding score:

ssample(β ) =
n

∑
i=1

yi−b
′
(θi)

ψ

∂θi

∂β
=

yi−b
′
(θi)

ψ

∂θi

∂ µi

∂ µi

∂β
=

yi−b
′
(θi)

b′′(θi)ψ

∂ µi

∂β

since µi = b
′
(θi). Thus, the FOC for the above score are:

n

∑
i=1

[yi−E(yi)]

V (yi)

∂E(yi)

∂β
= 0

Therefore, looking at the Poisson case and following the pioneer work of Gourieroux et al. (1984), the

objective (score) function corresponding to the Poisson family is given by:

−
n

∑
i=1

exp(xiβ )+
n

∑
i=1

yixiβ

and the relative pseudo-likelihood equation (FOC) which leads to the correct estimation of β is:

n

∑
i=1

[
yi− exp(xiβ̃ )

]
xi = 0

Given these fundamental results of GLM theory, we can apply them to the context of migration gravity

models.

Let us define the following migration gravity equation as in equation (1):

Fi jt = eζit eχ jt Xβ1
i jt Dβ2

i j F̃β3
i jt εi jt (14)
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where Fi jt represents the response variable relative to migration flows from a generic source country i

to a destination country j; ζit and χ jtare respectively source-time fixed effects and destination-time fixed

effects, considered in order to account for MLR; Xi jt is a vector containing the covariates of interest, such as

the “mass” of source and destination countries; Di j identifies the cost of moving, i.e. geographical distance;

F̃i jt is the spatial covariate which captures some interaction effects between country-pairs and εi jt is an error

factor assumed to be statistically independent with respect the regressors.

We consider the conditional expectation of migration flows Fi jt with respect to the set of regressors

Zi jt = (ζit , χ jt , Xi jt , Di j, F̃i jt):

E(Fi jt |Zi jt) = exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β3 ln F̃i jt ] (15)

and the following stochastic model which has to be estimated through the PPML estimator:

Fi jt = exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β

′
3 ln F̃i jt ]+ εi jt

= exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β

′
3 ln F̃i jt ]ηi jt (16)

Once the gravity specification has been described, a special focus has to be given to the spatial component

F̃i jt . It represents an added covariate, able to capture a diffusion effect in migration policies, modeled through

an alternative spatial technique suggested by KMS (2014). The next two sections will be devoted to the

examination of the spatial effects involved in gravity.

2.3 The Diffusion Effect

The introduction of spatial effects in the gravity equation has been achieving an increasing attention in

explaining the effects of migration networks. In particular, in order to capture the multilateral resistance

frictions, the identification of endogenous peer effects could provide a useful prediction of the influence of

networks on migration flows. As defined in the introduction, multilateral resistance to migration is related

to the influence of third countries in determining migration flows within a specific country-pair. The use

of specific fixed effects, as demonstrated in the literature on gravity, attempts to control for MLR. In par-

ticular, Ortega and Peri (2013) introduced in their RUM model (estimated with OLS) origin-fixed effects
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which capture all terms that vary across origin and year but not across destinations. Beine and Pearsons

(2015) proposed otherwise the use of destination-year fixed effects, since migration policies are defined at

target level. Moreover, apart from the influence of possible destination alternatives, Neumayer and Plümper

(2010a) focused their attention on the possible spatial interdependence between different pairs of countries,

also defined as dyads, due to policy choices. They developed a unified framework where all possible forms

of spatial dependence could arise with the direct inclusion of spatial effects in dyadic data. This avoids em-

ploying Bayesian hierarchical or random effects models as suggested, conversely, by King (2001) as starting

methodological point in the study of international relations.

Specifically, Neumayer and Plümper (2010a) distinguish different types of contagion or diffusion effects

in a directed dyadic data setting. The dyad is a specific unit of analysis formed by a pair of two political

units. It could be undirected when it is not possible to operate a distinction between the two members of the

pair, or directed, if instead it is well known that, in the couple i j, the interaction initiates with i and is directed

towards j. Thus, in the last case, the distinction between source/origin and destination/target countries of the

dyad is clear. If we analyze directed dyadic data, there are five options of modeling spatial interdependence.

A first candidate is the directed dyad contagion effect which describes a situation where migration flows

within the pair i j could be affected by the weighted sum of all other migration flows between source countries

k and destination countries m, where alternately i may coincide with k or the target j could be equal to m.

This situation is presented with the following notation:

Fi jt = ρ ∑
km6=i j

wFkmt + εi jt

where ρ is the spatial lag parameter to be estimated and ω is a time-invariant spatial weight matrix

(Ramos, 2017). In this sense, “the aggregate policy choices of other, similar dyads matters” (Neumayer and

Plümper, 2010a).

The residual four forms of contagion relate a subset of observed countries.

When flows between the country-pair i j depend only on the aggregate flows of source countries different

from i, an aggregate source contagion effect is defined:

Fi jt = ρ ∑
k 6=i

∑
m

wFkmt + εi jt
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if the flow depends on the aggregate flows of destination countries, despite of sources, we define an

aggregate target contagion as:

Fi jt = ρ ∑
m 6= j

∑
k

wFkmt + εi jt

Moreover, if we consider that the spatial interdependence is due to the choice of sources in relation to a

specific dyad, we define a specific source contagion term:

Fi jt = ρ ∑
k 6=i

wFkmt + εi jt

while when other targets m influence the migration flows between j and i , we have a specific target

contagion effect defined as:

Fi jt = ρ ∑
m6= j

wFkmt + εi jt

The choice on the right specification of the spatial interaction term belongs to the researchers according

to the theory they want to test.

A trivial point in the definition of the spatial lagged variable is also given by the specification of the

weight matrix. As underlined in Plümper and Neumayer (2010), the definition of the functional form of

the weighting matrix when there isn’t a clear dichotomous measure of connectivity such as geographical

distance could give different results. At the same time, the common practice of row-standardization could

alter the estimating results. Thus, the theoretical framework should guide the researcher to adopt a correct

functional form of the weighting matrix.

What we propose hereafter is a method which defines the spatial variable overcoming the problem of

row-standardization. Based on the assumption that “near things are more related than distant things” (To-

bler,1970), it’s possible to define the weights by considering an indicator function which equals 1 when the

absolute value of a specified difference lies below a certain threshold. Hence, the spatial term is identified

by following the KMS (2014) approach considering a directed dyad contagion effect, related to the influence

exerted on a generic country-pair i j by the aggregate of other similar dyads.
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2.4 Spatial Term Definition

Based on the hypothesis that country choices are often not independent of actions implemented by other

countries, the inclusion of a variable able to capture the spatial interdependence in the gravity model could

give relevant insights. In particular, the conclusion of such agreements between countries often generates

externalities, which could be positive or negative depending on the produced effects. In our application,

where we consider the migration flow that originates from EU’s neighbours and is directed towards EU

members, the remarkable phenomenon which could lead to a positive externality, is the relation that occurs

between a given country-pair and all the other dyads in the set of considered countries. Specifically, we

expect that similar dyads act in the same way producing an emulation or globalization effect. The similarity

between different dyads could be easily captured by using a threshold mechanism associated to a kind of

distance measure between dyads.

Motivated by this consideration, we construct a spatial variable inspired to the relevant work of KMS

(2014). Originally, they developed a class of nonlinear panel data models that allows to control the problem

of cross-sectional dependence (CSD). Differently, in our case study, we borrow the approach suggested

in KMS to account for CSD in order to model the interdependence among country-pairs in the pattern of

migration flows.

According to KMS (2014) approach, we can define a function which endogenously determines the neigh-

bourhood or similarity between units according to a specific concept of distance. Since we are interested in

considering a directed dyad contagion effect, given by the aggregate behaviour of “neigbouring” or similar

dyads, we can define a spatial lagged variable by using a threshold regime selection mechanism.

Let Fkm(t−1) be the lagged migration flow associated to the generic country pair km, where k denotes the

source country and m the corresponding destination country, di j = ln Di j be the logarithm of the geographical

distance between country i and the target j, similarly for dkm for the pair km, we define the spatial variable

F̃i jt as:

F̃i jt =
1

hi jt
∑

km 6=i j
`(|di j−dkm| ≤ r) Fkm(t−1) (17)

with hi jt = ∑km6=i j `(|di j−dkm| ≤ r), cross-sectional average of Fkm(t−1)of those country-pairs km similar in

terms of distances between the source and destination countries to the country-pair i j, according to a specific

threshold r. The threshold parameter r is endogenously determined by means of a grid search algorithm
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and for each value of r different estimation of F̃i jt are computed. The symbol ` introduces an indicator

function which is equal to 1 if the absolute difference of the distances associated with the two country pairs

i j and km lies under a given threshold r. Thus, the relevant lagged migration flows are the one for which

the condition described through the indicator function is matched. In particular, we evaluate that a similar

behaviour in migration policies is associated to those country-pairs characterized by a similar distance within

the countries forming the pair. In other words, considering the two generic country-pairs i j and km, if the

distance between i and j is more or less equal to the distance between k and m and, more specifically, if the

absolute difference between the two distances is below the value of the r parameter, the migration flow at

time t−1 of unit km has a relevant influence on average on the migration flow for the country-pair i j. This

idea represents the aggregate diffusion effect on migration flows between i and j given by the average of

flows in similar country-pairs km.

The value of r is obtained by least squares cross-validation, that is by minimizing the sum of squared

residuals given hereunder:

V (ρ,r) = min
ρ,r

1
N

1
T ∑

i j
∑

t
ε̂i jt(ρ,r)

= min
ρ,r

[
Fi jt −

ρ

hi jt
∑

km6=i j
`(|di j−dkm| ≤ r) Fkm(t−1)

]2

The minimization process allows to obtain the correct estimate of the spatial variable F̃i jt which enters

the PPML estimator in logarithm by construction.

Therefore, the proposed gravity model is:

Fi jt = exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β

′
3 ln F̃i jt ]+ εi jt

= exp[ζit +χ jt +β
′
1 ln Xi jt +β

′
2 ln Di j +β

′
3 ln F̃i jt ]ηi jt (18)

where
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F̃i jt =
1

hi jt
∑

km 6=i j
`(|di j−dkm| ≤ r) Fkm(t−1) (19)

and considering xi jt = ln Xi jt , di j = ln Di j, f̃i jt = ln F̃i jt it is rewritten as:

Fi jt = exp[ζit +χ jt +β
′
1xi jt +β

′
2di j +β3 f̃i jt ]+ εi jt

= exp[ζit +χ jt +β
′
1xi jt +β

′
2di j +β3 f̃i jt ]ηi jt (20)

The spatial variable computed through the KMS approach presents a value added with respect to the

traditional spatial techniques: the diffusion effect is the outcome of the influence caused only by those

country-pairs similar between them, where similarity is expressed as a function of distance.

3. Empirical Results

3.1 Data Description

For this empirical study, data have been collected from different data sources listed below:

1) the OECD International Migration Database provides tables with annual series on migration flows and

stocks of foreign-born and foreigners of OECD countries;

2) the World Bank provides a lot of global development data including population stock and GDP values

of countries all over the world;

3) the CEPII database provides several data about gravity models, specifically it makes available data on

geographical variables, such as bilateral distances (in kilometers) measured using the geographical coordi-

nates of countries’ capital cities, community of border and languages, and colonial history. The CEPII also

includes in the gravity dataset measures of GDP and population, however we decided to take into considera-

tion the estimates provided by the World Bank Database since it contains longer time series on the variables

of interest.

It is worth noting that the object of the following empirical study has been the determinant of migra-

tion flow in the dyadic framework where the source countries are identified with the so called European

Neighbouring Countries (ENC), while the destination countries are European nations. The ENC are a group
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of 16 countries which have established a cultural cooperation with the EU, which goes under the name

of European Neighbourhood Policy (ENP). This partnership governs the EU’s relation with the following

Eastern and Southern countries: Algeria, Armenia, Azerbaijan, Belarus, Egypt, Georgia, Israel, Jordan,

Lebanon, Libya, Moldova, Morocco, Palestine, Syria, Tunisia and Ukraine. These countries cooperate with

EU members in order to foster stabilization, security and prosperity in line with a global strategy. In addi-

tion to the aforementioned countries, recently, within the Euro-Mediterranean Partnership or Union for the

Mediterranean (UfM), some other countries are playing an important role, such as: Albania, Bosnia and

Herzegovina, Mauritania, Monaco, Montenegro and Turkey. Due to the lack of data about migration flows,

in our dataset, within the group of source countries, we do not consider Azerbaijan, Bosnia and Herzegovina,

Mauritania, Monaco, Montenegro and Palestine. Within the EU members we took into consideration a set of

11 countries with available data along the chosen period, i.e. Austria, Denmark, Finland, France, Germany,

Italy, Luxembourg, Netherlands, Norway, Spain and Sweden.

Based on the closeness relation between the EU and the ENCs and on the availability of data, we propose

an analysis of the unidirectional migration flows from ENC to EU, considering a panel dataset for the years

2000-2017.

Looking at inflows from ENCs, the favourite destination countries seem to be Austria, France, Germany,

Italy, Netherlands and Spain. In Table 6, we report the contribution of the main source countries for the

mentioned EU members.

Main destination Countries (EU
members)

Main source countries (ENCs)

Austria Syria (43,13%); Turkey (21,57%)
France Algeria (31,18%); Morocco (26,85%);

Tunisia (16,68%)
Germany Syria (40,90%); Turkey (18,02%); Albania

(7,98%); Ukraine (7,02%)
Italy Morocco (27,08%); Albania (26,56%);

Ukraine (13,57%); Egypt (13,31%)
Netherlands Syria (61,31%); Morocco (5,88%)

Spain Morocco (64,38%); Ukraine (12,55%);
Algeria (7,73%)

Table 1: Percentage of total migrants in 2017 above 5% on ENC total inflows
* In Norway and Sweden, respectively, the 81,39% and the 76,03% of total ENC migrants comes from Syria

Source: Own elaboration from OECD International Migration Database
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As stated above, we considered as dependent variable the annual series of migration flows in levels

from the OECD International Migration Database, where immigrants are identified using the foreign-born

criteria, and as basic regressors the population stocks and the GDP of both source and destination countries

in logarithmic terms. Specifically, we take the GDP per capita value (constant 2010 US dollars), accordingly

to the literature on gravity models.

Therefore, our potential dataset includes 3168 observations given by 176 country-pairs (16 source and

11 destination countries) over a period of 18 years.

3.2 Main Results

There are several specifications of gravity models for migration, according to different determinants of

flows. As seen in the introduction, based on Newton’s gravity law, the economic theory developed constant-

elasticity models, with the particular case of RUM models. As Santos-Silva and Tenreyro (2006) pointed

out, the most common practice to estimate gravity with log-linear models could lead to misleading results

for the inconsistency of the OLS estimator in the presence of heteroskedasticity and of zero values in migra-

tion flows. Therefore, the approach suggested by the authors and here proposed is to estimate a nonlinear

model which accommodate for the two mentioned problems of OLS, that is the Poisson Pseudo-Maximum

Likelihood estimator.

By construction the PPML implies that the dependent or response variable is given by the migration flows

taken in levels, meaning that also zero observations can be included. As the economic theory suggests, these

flows are supposed to be a positive function of the size of the economies involved and a negative function of

the distance between countries. In particular, the size is usually represented with the population residing in

the origin and destination countries, while the distance, specified as geographical distance between capital

cities of the countries forming the dyad, accounts for migration costs. Since the link function of migration

flows with the covariates is a log type, the measures of size and distance are taken in logarithmic terms. Fol-

lowing the approach of Lewer and Van den Berg (2008), the attractive forces between source and destination

countries could be represented with the log of the product of population size in the source and host countries,

moreover the attractiveness depends on the difference between the GDP per capita (always in log) in the two

countries.

Although, it is worth noting that the simple inclusion of these variables ignores completely two important

issues considered in the whole paper: MLR and spatial interdependence in gravity. In particular, with regard
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to MLR, we include origin-time and destination-time dummies, as suggested in the works of Ortega and

Peri (2013) and Beine and Parsons (2015). Moreover, in order to take into account spatial interdependence

between dyads, a diffusion effect is included and modeled through the econometric specification suggested

in KMS (2014).

Summing up, for the additive error term εi jt , the specification of the gravity model for migration is

described as follows:

Flowsi jt = exp
(

ln(popit · pop jt)+ ln(gd p jt/gd pit)+ ln(disti j)+ ln( ˜Flowsi jt)+ζit +χ jt

)
+ εi jt

where migration flows in levels between countries i and j at time t, Flowsi jt , depend on the product of

source and destination countries’ population in log terms, ln(popit · pop jt), on the relative difference in GDP

per capita between the target and origin country at time t, ln(gd p jt/gd pit), the logarithm of geographical

distance between capital cities of countries i and j (time-invariant variable),ln(disti j), and the diffusion effect

ln( ˜Flowsi jt), denoting the spatial variable constructed through KMS and taken in logs. In addition, the model

accounts for multilateral resistance with the origin-time fixed effects ζit and the target-time fixed effects χi j.

No specific pair fixed effects are considered, otherwise the coefficient of distance cannot be identified.

As described in the section above, the analysis has been conducted on a sample including 16 ENC coun-

tries as source and 11 EU members as destination countries, identified on the basis of data availability. The

model has been estimated with standard errors clustered for each origin and destination country combination,

as suggested in the literature of PPML estimation, so accounting for both heteroskedasticity and autocorre-

lation.

Since for Syria, data on GDP per capita for the observed time-period are not available, we estimated

the complete model for the sample excluding Syria and the model for the entire sample omitting the relative

difference in income variable. The obtained results suggest an almost insignificant role played by the income

term in determining the migration flows, so that we report in Tables 9-10 the results for the whole sample

and in the Appendix (Tables 11-12) the results related to the sample without Syria.
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Variable (1) (2) (3) (4) (5) (6)
ln(distij) -1.316*** -1.217** -1.728*** -1.728*** - -1.255***

ln(popit ·popjt) - 0.763*** - 0.930*** - -

ln(F̃lowsijt) - - - - 0.763*** 0.607***

origin-time dummies no no yes yes no no

destination-time dummies no no yes yes no no

Table 2: Migration gravity model estimates with PPML
legend: * p<0.05; ** p<0.01; *** p<0.001

Variable (7) (8) (9) (10) (11) (12)
ln(distij) -1.186** –1.691*** -1.164*** - -1.658*** -1.658***

ln(popit ·popjt) 0.746*** - - - - 0.258***

ln(F̃lowsijt) 0.373*** 0.881*** 0.819*** 0.945*** 0.743*** 0.743***

origin-time dummies no yes no yes yes yes

destination-time dummies no no yes yes yes yes

Table 3: Migration gravity model estimates with PPML (continued)
legend: * p<0.05; ** p<0.01; *** p<0.001

The results are presented by gradually increasing the complexity of the model specification. The first

four columns of Table 9 show the results of estimating the model without considering the spatial effect. In

(1) and (2) we do not consider the presence of fixed effects and we proceed by estimating, in (1), the inverse

relation between flows and distance and, in (2), we add the size of the considered economies measured with

the log of the population product in source and destination countries. Models (3) and (4) add to the first

two specifications the multilateral resistance issue by using origin-time and destination-time dummies. In

specification (1) - (4), the coefficients relative to the mass of the source and destination economies are positive

as expected but with respect to their magnitude, the introduction of origin-time and destination-time dummies

produced a broader effect since the coefficient related to population size increases when fixed effects enter

the equations. The same for the log of distance that affects significantly and negatively migration flows,

in line with the Newton’s gravity hypothesis which suggests an inverse relation between the two. In (5),

we introduce the spatial variable capturing the so called diffusion effect without accounting for multilateral

resistance, the same as in (6) and (7) where we gradually add the other regressors entering the traditional

gravity equation. In regressions (8) and (9), we evaluate only the two determinants of migration flows related

to distance, considering, alternately, origin-time dummies (8) and destination-time dummies (9). From (10)

to (12), we consider both fixed effect and the spatial variable, going from the univariate case in (10) to the
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complete model in (12). In all model specifications, the introduction of the diffusion effect, related to the

influence caused only by those country-pairs similar between them, has a significant and positive impact on

migration. Specifically, looking at model (12), the diffusion effect mitigates the impact of countries’ size,

giving some evidence of the important role played by the socio-economic partnership between ENC and EU.

Empirical insights suggest that the cultural, political and economic cooperation between different countries

incentives people to move from home to host countries, by looking at the global actors of migration policy.

In particular, with special regard to the spatial variable modeling, we can argue that migration flows within a

specific country-pair are influenced by those between other source and target countries which share a similar

distance with the dyad taken as reference point.

4. Final Remarks

In this work, we propose new empirical evidence in the estimation of gravity models for migration. We

point out two fundamental issues which arise in the estimation procedure. First, we consider the drawback

associated with the traditional OLS estimation of log-linearized models. In the presence of heterosckedas-

ticity, the least squares estimates are seriously biased since the transformed error term is correlated with

the considered covariates. Furthermore, the log transformation of migration flows is incompatible with the

presence of zero values in the response variable, leading to the elimination of those data from the sample.

In order to address these estimation problems, the proposed solution is to adopt an estimator which provides

correct and consistent results. So that, following the suggestion of Santos Silva and Tenreyro (2006), the

PPML estimator has been implemented to deal with these sources of biases. In particular, the advantages

of PPML estimation are related to its flexible structure: for consistency, the correct specification of the con-

ditional mean of migration flows, that is the choice of the right set of covariates, is a necessary condition.

Additionally, zeros are not deleted from the sample, since migration flows enters in levels by construction.

Second, a widespread phenomenon which can lead to misleading results, if not considered, concerns the

concept of multilateral resistance and spatial interdependence. In this work, we provide a new way to handle

it, by adding to the usual inclusion of origin and destination-time dummies, a spatial variable able to capture

a contagion effect in the dyadic setting of country-pairs relations. Specifically, we propose an adaptation of

the spatial econometric modeling proposed by KMS (2014) in the field of nonlinear panel data. The spatial

variable captures the aggregate influence of third part with respect to a specific country-pair, considering the
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average behaviour in migration policy of a group of “similar” country-pairs, through the implementation of

a threshold mechanism on distances.

Finally, we apply this estimation methodology to a panel dataset formed by European neighbours and

European members over a period of 18 years. The results confirm the positive influence of pull factors (such

as the population size of origin and destination countries) and the negative impact of geographical distance

on migration flows. But an important determinant in the volume of migration flows is given by the significant

and positive contribution of the spatial term, meaning that the action of similar country-pairs produces an

aggregate diffusion effect.
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Appendix

Variable (1) (2) (3) (4) (5) (6)
ln(distij) -1.673*** -1.625*** -1.691*** -1.583*** -1.583*** -

ln(popit ·popjt) - 0.819*** 0.856*** - 1.266*** -

ln(gdpjt/gdpit) -0.258 - 0.353 0.362 0.629 -

ln(F̃lowsijt) - - - - - 0.950***

origin-time dummies no no no yes yes no
destination-time dummies no no no yes yes no

Table 4: Migration gravity model estimates with PPML on the incomplete sample
legend: * p<0.05; ** p<0.01; *** p<0.001

Variable (7) (8) (9) (10) (11) (12)
ln(distij) -1.592*** -1.595*** -1.588*** -1.510*** -1.510*** -1.510***

ln(popit ·popjt) - - 0.801*** - 0.853*** -

ln(gdpjt/gdpit) - -0.253 - 0.376 -0.133 -

ln(F̃lowsijt) 0.672*** 0.686*** 0.435*** 0.758*** 0.758*** 0.758***

origin-time dummies no no no yes yes yes
destination-time dummies no no no yes yes yes

Table 5: Migration gravity model estimates with PPML on the incomplete sample (continued)
legend: * p<0.05; ** p<0.01; *** p<0.001
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