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Asymmetric Information in a Market with n+ 1 Brownian
Motions

Asimmetria | nformativa in un Mercato con n+ 1 Moti Browniani

Luigi Romano and Donato Scolozzi

Abstract This paper covers asymmetric information in financial mexke@m a micro perspective. Particu-
larly, we aim to extend the asset pricing framework intrastlby Guasoni [2], who analyzes models price
dynamics with both a martingale component, described bynaeent shocks, and a stationary component,
given by temporary shocks. First, we derive a generalinatiothis asset pricing model usingBrown-

ian Motions, including an Ornstein-Uhlenbeck process agitht+ 1)th element. We find non-Markovian
dynamics for the partially informed agents, which queditime validity of the efficient market hypothe-
sis. Moreover, we compare the positions of informed andaglrinformed agents. Thereby, the filtration
for informed agents is larger and initially specified, wtaexré¢he filtration for partially informed agents is
smaller and obtained from the Hitsuda representation [&]beth agents, our study yields similar results
as the findings of Guasoni, for the logarithmic utility maidation problem.

Abstract Questo lavoro esamina I'asimmetria informativa nei mearfiaanziari applicabile anche ad una
micro prospettiva. In particolare, ci proponiamo di estenelil lavoro sull'asset pricing introdotto da Gua-
soni [2], il quale analizza le dinamiche dei prezzi che préga@ao sia una componente martingala, descritta
da shocks permanenti, sia una componente stazionariasittasta shocks temporanei. Inizialmente, deriv-
iamo una generalizzazione di questo modello sull’'asseimyj utilizzando n Moti Browniani, prevedendo
come(n+ 1)th elemento un processo Ornstein-Uhlenbeck. Otteniamadimamica non Markoviana per
gli agenti parzialmente informati, mettendo in tal modo isadissione la validé delle ipotesi di mercato
efficiente. Inoltre, confrontiamo le posizioni degli agentormati con quelle degli agenti parzialmente in-
formati. In questo quadro, la filtrazione per gli agenti pialmente informaté pil grande e inizialmente
assegnata, mentre lafiltrazione per gli agenti non inforirggtil piccola e ottenuta attraverso la rappresen-
tazione di Hitsuda [3]. Per entrambi gli agenti,nell’ambitiel problema della massimizzazione dell’ uilit
logaritmica, i nostri studi forniscono risultati simili awglli ottenuti da Guasoni.
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1 The modé€

We consider a financial market where we have a riskless Bss®jheter with a risky ass& The market
interest rate is assumed to be deterministic. In order torikessthe dynamics of the risky asset, we consider
a probability spacéQ,.7, Z?) on whichn+ 1 are defined, witlm €, independent Brownian Motions:

(BY)tcjo o (BO)tcioseops - - - (BDeiocseols (BE )icpo o
If we set the real paramet@p.1 > 0, we consider the Ornstein-Uhlenbeck pr0c€1$l§+l)te[o +o0) de-
fined by the following equation:

t
UM 4 Ao /0 UMlds= B!, t € [0,+o] (1)

which, as known, is given by the following relation:

ot = [fetmt-sgep o
0

Then, if we set the real numbepg, with j =1,2,....,n,n+4 1, pn,1 > 0, with the firstn numbers not all
zero, let us consider the proce(s@s)te[oﬁw) defined by:

n .
Yo=Y piB{+ pnpal €)
=1
Now, let us introduce two deterministic Lebesgue measarlvictions
u,o: [Oa+°°[ — [Oa+°°[

such that
YT>0 pupell([0,T]), oel?([0,T).

Suppose that the price of the risky asset is described bytlweving differential equation:

d
gs = ydt+ oY 4)
whose solution, as known, is given by the relation
t 0-2 t
s =senp| [[ (=% Jas+ [ o] ©)

Now we can describe the previous situation in the followiraywwe have an "informed agent” who has
all the information provided by the all Brownian Motions,daa "partially informed agent” who has all the
information provided by the proce¥s The informed agent refers to the filtrati@éztl)teloﬁrm[ obtained by

completing the natural filtration generatedry 1 Brownian MotionsB¢, B?, ..., By, B!, which therefore
satisfies the usual conditions of completeness and rightreoty. The partially informed agent, instead,
refers to the filtratior(ﬁo)te[o_m[ generated by the proce¥s Of course, we have thag? c .7, Vt. We
might state that the informed agent’s risky asset valuevesahccording to the assigned Brownian Motions;
therefore its value is determined by the following equation

S n+1

d .
= = (Ht - pn+1/\n+1UtUtn+l) dt+ o z pdetl (6)
=1

which refers to the Brownian Motion
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n+1 5 ’%n+1 )
W= |5 P > piB!
=1 =1

whose solution, ik > 0 is the initial wealth, is given, as known, by the relation:
n+1

! SET A= P R 2 ‘o
/0 (Hs— Pny2Ans 108U ) — > Z pj | o5 |ds+ Z Pj /0 osdWs
5 =xe A S N

In the next section, we want to derive, for the partially imfi@d agent, an analogous equation which repre-
sentsy;, and thereforé, in terms of filtration#° and of an opportune Brownian Motida?.

2 Factorization of the Process Y; with respect to .#9,

In this section, we shall examine the Markov property;aind will determine, with respect to the filtration
70, the relative Brownian Motion which represents it.

Theorem 1. Y; is a Gaussian process, and moreover:

1.E(Y)=0 Vtec[0,+oof

n
- o 2 2 ~An+1lt=8l _ g Antp1(t+9)
2.7 (st) =cov(Ys,\) = (le pj> tAS+ P, 2/\nf1 :

Proof. 1. Gaussian and mean zero properties are obvious. Besides:
2. I(sit) =cov(Ys, Y1) = E(Ys%) =

n , n .
E Z PiBs+ anUSrHl] [Z ijtJ+pn+1Utn+l =

=1 =1
utilizing the independence property of the Brownian Motie have that:

n . .

=E (Z p,ZBéB[' +E (pﬁ+1U3n+1Utn+1):
=1

n2'j 2 S s et [ et
> ij(B_i;Bt)+pn+1E </0 e iU g /0 e Mnalt-U) g+ >=
SAt
Z p12> SAt+ p%Jrl/ g Mne1(t=U)=Ansa(s-U) q =
1 0

n
2 2 - Anga(trs) MmN g
]lej SAt+ anrle nta( )Tﬂ_—
n

2 > e*An+1“*5‘_e*An+l(t+5)
IZP,‘) SATHPhy g i1

To verify the Markov property of the proce¥s we recall the following result [4] (111.1.13)

Theorem 2.Y; is a Markov process if, and only if, we have:
r(st)r(tu)=rttrsu), vs<t<u

Theorem 3. 1. If we assume thakt,,1 = 0, then Y is a Markov process.
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2. If we assume thaX, 1 > Othen Y is a Markov process if, and only if, we have one of the two ¥atg
conditions: =0 Vj=1,2,..,nor phy1=0.

Proof. Property 1 is obvious. Besides it is obvious thats a Markov process if we have; =0 Vj =
1,2,...,norif we havepn;1 = 0.
Then let us have that:
r(s,t)r(t,u)=rt,tH)r(su) vs<t<u

n
and also suppose thi p]-2 > 0.

=1
Considering the limit fou — +o of

I (st)r(t,u)

and
I (t,t)r (s,u)
we have:
e Mn+1(t=9) _ @=Ansa(t+9) 1— e 2ot
tpﬁ—}—l =S +1" 5y
2)\n+1 2)\n+1

which can be written also as follows

p2 1S _ g Ani1s @hniat _ g Angat
n+1 s t

=0, Vs<t

from which, considering the limit far — 4o, we deduce the thesipp;1 = 0.

Now let us consider the proce&gslefined by the relation:

n+1 7% n . t n+1 7%
Z=(yp| Y (B[‘ +Ani1 /0 B&O'U) +{ Y] peaBM (8)
=1 =1 =1
It verifies the following result:

Theorem 4. 1. Z  is a Gaussian process.
2.E(Z)=0 WVte[0,+.

1
n+1 n t rs

3. COV(Z, Zs) =t AS+ (z p,2> (Z p,2> /0 /0 (Ans1+A2Z UAV) dudv
=1 =1

Proof. We note that th& process can be re-written in the form:
1 1
n+1 "2 n . t ) n+1 2
Z = (Z p,2> Z P;j (Btj +)\n+1/0 (t—u)d83,> + <Z PJZ> Pre1Blt =
=1 =1 =1

n+1 5 _% n t ) n+1 5 _% L
(Z pi) Z pj/o [1+ Ansa (t—u)]dBY + (Z pj) Pn1B{
=1 =1 =1

Therefore the covariance, because of the independence Bfrtlwnian Motions, is given by:
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n+1

coV(Z;, Zs) = (Z p]) i / [1+Anta (t—W)] [1+ Ansa (s—u)]du+

n+1 ) -1 )
+ ij PhiitAS
=1

by means of standard calculations, we get the final relation.

Now let us consider the following function

n+1 5 . n ) )
- <,21 p,-) (Zl pj) (Ans1+AgatAs)
= =

which is part of the covariance of the proc&ssFor our further aims, if < s <t, then the formula can
also be written as follows:

n+1 -1 n
- (Z pf) (Z pj2> (Ans1+A24s) VO<s<t.
=1 =1

n+1

1 n
To simplify, if A2 = <Zl p]2> (Zl pf) , we can consider the following result:
I= =

Theorem 5. Considering the previous functidn(t,s), the function

9)

Ant1n(s) for0<s<t
g(t.s)
0 otherwise

verifies the following integral equation
f(t,s)=g(t,s) — /gtu (suydu Y0<s<t (10)

andn (s) verifies the following Cauchy problem

(e — A2
(115 it

Proof. Itis easy to verify this, considering the following intebeguation:

—A (Ans1 +Ar$+1s> Ant1n (s n+l/ n?(uydu VO<s<t

from which we easily obtain the Cauchy problem.
Its solution, as already verified, is given by the function:

1-A—(1+A) eMns

) = A A T Ay

At this point we are able to enunciate the following theorem:

Theorem 6. 1. Consider a Brownian MotioriB?) such

that we have:

with respect to the filtratior{.7°

te[0,+oo] t >te[0-,+°°[
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z— [ ([Taewdet)ds—e0rns [ ['n(uoeg) s

2. Considering the function g0, T] x [0, T] — O defined by

~Anpan(s)em1fsn@du for o< s<t
g(t,s) = (12)

0 otherwise

we obtain that:

B?:Zt—/ot </Osg(s,u)dzu) ds

Proof. 1. The existence of the Brownian Motid@] is a consequence of [3], proposition 2, and also of the
fact that the functiomy(t,s) verifies the following integral equation:

fts: (t,s) — /gtu (ssuydu V0<s<t.

B?:th/ot </Osg(s,u)dzu> ds

it is sufficient to utilize [1] or [2] or [3]. The functiomy(t,s) is called the negative resolvent@ft’s).

2. To verify the relation

Theorem 7. The processes ¥nd Z verify the following equation:

ni1 %
Yt+)\n+l/ Yudu= z p]

so we have

n+1 % t
— Z pJZ / e*/\n+1(t*U) dz,.
=1 0

Proof. We have that:
1
n+1 ) 2 n+1 X 1 n+1 . t 1
= > P Z=3 piBl+ Pl = 3 p (B[‘ +/\n+1/0 Bﬂ,dU> —Pn1BT =
=1 =1 =1 -

¢ nr1 t
—/\n+1(/0 Lzl piBl + pn+1ULT+1] du= —/\n+1‘/0 Yodu.

By integration we easily obtain the second relation.

It is now possible to establish the link between the pro¥easd the Brownian Motiom?. Namely, we
have the following (fundamental) result:
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be its completed natural filtration. As we have

n E
Theorem 8. LetY = 5 p;B! + pny Ut and (‘%O)te[o.w[
=1 :

already noted, Bis a Brownian Motion with respect to the filtratic(t:%o) of Y. Besides, we suppose

te[0,4-00]
that:
1. .
n+1 T2 t s s
B[O: (lepjz) |:Yt+/\n+l./0 </o [1+I7(u)]e/‘n+1fuf7(l)dldYu> dS:|
2. )
n+1 2
Yt:<glp%> | Je 0 e n(w)] - n(w)] o
3. .
_ n+12 ? 0o oAmat-w (o, ["
= (51) [ oo (e o)
4.

Y- (Jzi p%) ? 8 [ ([T n(le s vag ) ds].

Proof. 1. In order to obtain the first relation, consider

t S
B -2z | (/ g(s,u)dzu> ds
o \Jo
in which we substitut&; for the following equation
1
n+1 o2 t
Z = <Z pf) [Yt +An+l/0 Yudu}
=1

so that we obtain:

n+1 -3 t s s
= (3] et [ (e [[atsuav- [“asuou)ds.
= 0 0 0
Utilizing the method of integration by parts in the followimtegral
S
/ g(s,u)Y,du
0
"u
and if we suppos&(s,u) = / g(s,v)dy, it is easy to obtain the relation:
JO

S S
/ g(s,u)y,du= )\n+_‘]_YS*/ G(s,u)dY,
0 0

substituting inB?, we obtain the relation.1
2. In the relation
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1

n+1 5 2 gt P
Y, = ps / e An+1(l=S dzs
27) b

we substituteZ,, with the relation

Z- o [ [0 s

so that we obtain

it 2 % t Ans1(t—9) t S Ans1(t—s) 4RO
Y= ‘ /e‘”+1‘d —A /(/ u)e "n+1tSd >ds}
t J=Elpj [ 0 B —Ania o \Jo n(u) By

which, applying the Fubini Tonelli theorem, can be writtarthe form:

n+1 % t t t
Y = z p]z |:/ eﬁAn+1(t73)ng _ /\n+1/ </ n(u)e)‘n+l(ts)ds> d88:|
j:l 0 0 u

which, simplified, gives the relation 2
. In order to obtain the above relation, we consider the tmua

n+1 2 t t s
Y- (3 e [ / e Mat-9ggd A / < / n(u)e"‘"ﬂ(t‘s)dBS)ds}
=1 0 0 0

utilizing the method of integration by parts on the first gri, we obtain:

t t

/ e /\n+1(t*s>ng — B9_An+l/ e /\n+1(t*5>Bgds
0 0
Substituting and simplifying we obtain the result 3

n+1 -3
. Inequation 1, iip = | Y Pt | ¥, we have
=1

Bto =W+An+1/ot (/Os[l—l—r](u)}e’\nﬂfj'ﬂ(l)dldv\b) ds

which, written in standard form

t s s
BY =W _/ (/ —Ans1[14 n(u)) et n(')dldwj> ds
o \Jo
identifies the following Volterra Kernel
Anp1[L+n(s)]eMmakn(dl foro<s<t
k(t,s) =
0 otherwise

Utilizing [2], we also identify the relative negative resehtR(t,s) through the relation
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) —K(t,s)elskuwdu  forp < s<t
k(t,s) =

0 otherwise

from which, by substitution, we obtain the following retaii
3 Ani1[l+n(s))eMalt=s) se0<s<t
k(t,s) =
0 otherwise

As a consequence we have

\/\A:EA?—/Ot </Osk(s,u)dafj) ds

from which, we deduce relation 4 :

Yo (Jzi p%) 2 80 [ ([T nwe ot ) d].

On the basic of result 4 of the previous theorem, the asse¢ piynamics for the partially informed
agent, can be shown evolving as follows:

ds _ T 2 : 0 t Ania(teu) ) }
5 —utdt+q<;pj> {dB} )\n+1(/0 [1+n(u)e dB? ) dt (13)

which can be re-written in the form:

1 1
ds "o’ ! —Ane1(t—U) 4RO o)’
g = |t —Ans1 Z P (O-t/ [1+r](u)]e n+1 dBJ) dt+ o Z P dao (14)
j:l 0 ]:1

Conversely, for the informed agent, the asset price dyran@n be shown evolving in the following equa-
tion:

S n+1

d .
§ ~ (M= PradnagUT ) di+ o 3 pidB (15)
=1

which refers to the Brownian Motion

n+1 5 ’%n+1 j
Pj PjB;.
a7 P

3 Thevaluefunctionsfor two agents.

As already said in the previous section, the informed agemsiders the underlying value starting from an
initial wealth x > 0, and investindd; units of §. He obtains the self-financed value of wea¥h at time

t, through all the assigned Brownian Motion. Conversely theigléy informed agent, invests the same

monetary itenx > 0, and he utilizes the Brownian Motid8{ in order to assess the dynamics of the wealth
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obtained. In this section, we want to examine these two tiitos, and we also want to evaluate the utility
functions the two agents use.

3.1 Thevalue function for the informed agent.

Let x > O be the initial monetary item that the partially informecdeaginvests in ass&. To do this, he
utilizes an opportune stochastic proceksvhich, at timet, represents the asset shares used. So he obtains
the value (self-financed) of weal¥y, at timet, through the following relation:

t
X =X+ /O HydS. (16)

As already said, the procebls, which will be said admissible, must be predictable with ezdpo filtration
(3«711)t T integrable with respect to proceSsand such that almost certainly we also hage> 0,
vt € [0,T].

Finally, if 7 is the utility function, the agent maximizes the mean wtitif the wealth obtained in the
final instantT. Thereby it solves the following problem:

Sup{E (% <x+/OT ths,)) C H admissible}. 17)

In order to guarantee the positivity of the wealth produdsslary instant, we can consider the procegs
defined by the relatiohi, = né. Therefore we have:

t X
X :x+/ E22dS, (18)
0 S
from which the deduction dx ds
A g0 19
%~ s (19)
that is to say
dX n+1 ot ]
X =T (l-lt — Pnt1Ans16GtU; )dt+ TE Ot Z p;dB;. (20)
=1
If we isolate the Brownian Motion: .
n+1 5 T 2n+1 )
W= |5 P > piB!
=1 =1
we have:
d)Q n+1 %
x TE (b — pn+1)\n+1UtUtn+1) dt+ z pIZ oy dW. (21)
=1

Therefore the value of weali}, at timet, is given by the relation

n+1

t 1
+1 2 2
/o [Tfs (Hs— Pni1Ani10Ug ™) — 2 <le pi) U

n+1

1

2
ds+ |y pﬂ /O TE0sdV,
=1 :

X = x€
and, as a consequence, at final instamte have:

(22)
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n+1 ) % T
: osd
;pj /O ys s\Ns.

Now, considering the logarithmic utility function, we hatvee following result:

ds+

T il 1 n+1 ) )
/0 T (Hs — Pn+1An+10sUg )*5 Jlej e

XT =Xe

(23)

Theorem 9. Let % (y) = logy. The process

_ Hs— Prs1Ant 108U
&= il
Z Pj oz
=1

provides the optimal investment share and the relativees&laction is given by:

T _ A yn+1)?
u(x) = logx+ (IJS Pn+1An4+10sUs ) dsl

1
E [ / .
n+1 5 Jo O'S
=1
Proof. V 1 admissible, it results

i
W (Xr) = log(Xr) = Iogx+/0

1 n+1
T (s — pn+1)‘n+1asusn+l) 2 (ZL sz> ”3203] dst+
i=

lril pjﬂ : / " oW,
= 0
as a consequence, considering the mean value, we have:
T 1 n+1
/0 [Tfs (Us— pn+1)\n+1UsUsn+l) 3 (12\ p12> 77520521 dS] .

We obtain the relative maximun value, applying the resthlis allow to derive an integral. As a consequence
the portfolio share is given by

E (log(X7)) = logx+E

~ Hs— pn+1)\n+1USU§+1
T = n+1 X
> bj|og
=1

therefore the relative maximum value is:

u(x) :Iogx+}E ds

2

/T (Us— pn+1)\n+105Usn+l>2
n+1 )
Z pj | 02
=1

We can re-write the value function, in the following way:

from which we deduce the relation looked for.

Theorem 10. We have:
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T 42
Hs
n+1 0 0'2 d S+ n+1

SRR
=

=1

u(x) = logx+

Pai1 | TAnta 1 g 2T Ani1
] 8 '

Proof. From the previous equation we have:

T 2 T 2 AZ T
u(x) = logx+ n+11 EVO HSZdS}_FWE[/o I;':Us”*lds}+pn:iln+lE[/o [Us”“]zds]'

.
2yt T 3 23 P
=1 =1

=1

Since the functiongls and gs are deterministic, we have:
r T uz T uz

el [ ;ds} - [ Eas
|Jo O¢ 0 Og

Mqre%)ver it results: . . . <

E / MSUnglds] -E {/ (“3/ e—)\n+1(5—u)dBun+1) ds} :/ E <“3/ e—/\n+1(s—u)d|3un+1) ds=
L 0 Os 0 Os.Jo . 0 Os.Jo

/ Hsg (/se’\““(s”)dBu”“) ds:/ Hsogs—o.

Jo 0 Os

Os 0

Finally, we have:

2 2T
E [/T [Usn"‘l} ZdS] :/T E {/Se_)\nu(S—u)dBTl} ds— /T [/se—y‘nﬂ(s_u)du} dse T l-e™m '
; ’ ° 0 LJo 21 4Ar$+1

In this way we have the thesis.

3.2 Thevalue function for the partially informed agent.

Similarly, the partially informed agent considers the stveent shares provided through proced&ead-
missible: they are predictable with respect to the filtnat(c%‘))t €[04’ integrable with respect to the

processS and such thak; > 0 almost certainly andt € [0, T]. If ¥ is his utility function, then the agent
maximizes his expected utility of wealth at tifie Therefore it solves the following problem:

max{E(“f/ <x+/oT th3>) C K admissible}. (24)

Also in this case the agent considers the proggskefined by the relation:

Ky = th.
Therefore we have:
t Xs
% :x+/ KeoSdS, (25)
0 S
from which the deduction d q
j = thS (26)

Xt S
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that is to say, if
t
we= s [ [L+n(u))e 2t Eg
0

d)Q n+1 % n+1 %
W KMt (Z pf) w6t | dt+ K ot (Z p?) dBy. (27)
=1 =1

The wealth at time, if x > 0 is the initial one, is therefore given by

t 1\ 2 1 n+1 t 1\ 2
/ Ks | Hs+ Z pJZ VsOs| — éKszo-s2 Z plz d3+/ KsOs Z pJZ dB
0 =i = 0 =1

we have:

and, as a consequence, at final timeve have:
1 1
T nit 2 : 1,5, ot 2 T nt 2 : 0
/0 Ks | Ms+ Z Py | VsOs —EKSO'S Z P ds+/0 KsOs Z pj | dBg
Xr = xe = = = . (29)

Considering now the logarithmic utility function, we havetfollowing result:
Theorem 11. Let ¥'(y) = logy. The process

1

n+1 2
Hs+ Z pjz VsOs

=1

n+1 )

=1

'S
vs=—Ania [ [1+n(u)]e s VaE]
Jo
provides the optimal investment share. The relative valnetfon is given by:

Ks:

where

2

1 T 1 n+1 %
V(X) = |ogx+ TE / =) Hs+ Z pJ2 VsOs | ds| .
2 Jo O¢ =1
=1

Proof. V ks admissible, it results

T n+1 5 % 1 n+1 ) > 5
“//(XT):Iog(XT):Iogx+/O Ks | Hs+ Jlej VsOs | — 5 ;pj K0S | dst

J

n+1 % T
> / me0sdV\g
=1 0

as a consequence, considering the mean value, we obtain that
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T n+1 ) % n+1

The relative maximum value is obtained applying the theargvhich allow to derive an integral. As a
consequence the portfolio share which maximizes the resgiven by

n+1 %
Hs+ Z pJZ VsOs
Ks = =
s nil
Z pj | ¢
=1

therefore the relative maximum value is:

2 -

[ i 2
Hs+ Pj | VsO:
T S (lzl J) sYs
ds

1

v(x):longréE /o =
LIRS

=1

from which, we deduce the relation looked for.

We can re-write the value function, in the following way

Theorem 12. We have:

T S
/ IJS d S+ n+1/ |:/ [1_1_’7 (u)]Ze—Z)\n+1(S—u)du:| ds
0 0

v(X) = Iogx+
Proof. From the equation
1 2
1 T1 n+1 ) 2
V(X) = |OgX+ TE /0 ? Hs+ Z pJ VsOs ds

2
27

we have:

T 442 T
vix) —logx+ —— [ [ Bad 1t [ [T Had e[ [ vaae -
2”+1 , LJo 02 1 \ 2z LJo Os 2 o ®
;pj (lejz>
J:

T T
logx+ —— / “Sds+;l/ gSE[vS]dSJr;EUO vszds]_
S

2 n+1
2 (5)
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T T
o —1 / ustJr% || teetas ge | [ vaas.
2 S

w8

Besides it results thsat:
€l =€ [~ [+ n(u]e s V] 0
0

Finally we have:

. [/(;T VSZdS] - /OT E[vg] ds= /OT = K—/\n+1/os[1+"l(u)} eA”+1(S”)dI3(j) 2] ds=
)‘r$+1/OT [/ 1+ (u)] e Zneals du} ds

From the results obtained we have the thesis.
In order to compare the two value functions so far obtainedlcansider the following theorem:

Theorem 13. We have:

s 1-A)?
o Znia(s-u) _(
T%+MT/‘[A 141 (u)2e duds= 5, =

n+1 5 -3 n 5 2
where A= ps pT | .
(27) (37)

Proof. First, we verify that

Nl

T 1-A)?
| 1 2)\n+1(T u) = (
A J, B (u )%e U=

if, within integral, we substitute = T — u, we obtain:

/0 [14 1 (T —v)Re gy

Besides, if we denote the indicator function of the intef@al | with 1o 1}, we can write the limit as
- e 2 2Ania(V)
lim [1+n(T—v)]7e “m ¥ 51 (v)dv.
T—+0 /0 ’
Now, note that, since thg +Iirm (T —v) = —A, the integrand function tends punctually to the function
—>+00

Ve [0,4oof— (1— A)?e 1V Moreover the integrand function verifies the followingduellities:
0< [14n(T—v)Pe i1l (V) dv< (1+A) e it Vv e [0, 4]

and the decrease and increase functions are integralj& em|. The Lebesgue dominated convergence
theorem allows the following relation

+00 oo
T|im [1+n(T —V)]Zefz)‘"H(V)'[o,T] (V) dv= / (1—A)2872’\”+1Vdv
—+% /0 0
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from which, integrating the second term, we have:

1-A)?
lim 1+ e a0 gy = ( ,
Amo L LenPe 3

from which, utilizing the standard results, we have that:

T
lim U [1+n (u))?e Py ds= +oo.
T—+0 /o 0

Utilizing De L'Hopital’s rule, we get the thesis.

4 A comparison between the two value functions.

In the previous sections, we have determined the valueibmecfor the two agentsi(x) for the informed
one,v(x) for the partially informed one. In this section, we want teds on the divergence, wh@h—
+oo,the two utility functions. Besides, whéh — +, the difference between the expected utility of two
agentsu(x) andv(x), diverges.

We can enunciate the following result:

Theorem 14. Consider the following properties:

1.
T2 it | 2TAnpr— 14 2T
lim u(x)=_lim | logx+ s gy Pt i S — 4o
T+ T+ n+1 ,Jo 032 n+1 5 8
23 P 2 P
=1 j=1
2.
; : 1 T fi1 S 2 5-2A
= —_— —2Ans1(s-u —
Jim v(x) = tim | logx+ —— 2/ 5205t / [/0 1+ (u)?e du}d o0
ZZ Pj
=
3.

_ - A n 2 /nt+l ! 2 n 3
T|l>rr+]wu(x)Tv(x): = (I;pjz> (glp,z> [(2 pj> <1=1 f)]

as a consequence we have:

Proof. The first two properties can be easily verified. About prop8rtwe note that

2 _ —2T Ant1 22 T
U(X)—V(X) _ n?_Trl [ZT)\m—l ]é'i‘e - 1 B anrl A [/O [1""7( )] 2)\n+1(s— )du ds

&
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and therefore

2 T
n+1

T ol 8T

&7

as a consequence we have

uX) —v(x) _ Phia [ZT/\nH_ 1+e‘2”n+11 A

lim U(X) _V(X) _ AI’H—l pﬁ+1
T—+oo T 4 nt+l

it follows that

u(x) —v(x)  Any1
T—too T 4 ntl

and therefore

n+1

lim

2T

S
[ / [14 1 (u)]?e Pnals-Ugy|ds
0

n 2
Pha— Y Pi+2( Y pf
u(x) —v(x) :An+1 e J; : (121 :

T oo T 4

that is to say

N———
NI
- >
IMT
=}
3
N——
Nl
|
1M =
©
—N

T+too T 2 ntl

which, simplified, provides the thesis.

17



18 Luigi Romano and Donato Scolozzi

References

1. Cheridito, P.: Representation of Gaussian measures that @ir@legt to Wiener measure. Seminaire de Probabilitis,
XXXVII, Lecture Notes in Math., vol. 1382, Springer, Ber]i@1-90 (2003)

. Guasoni, P.: Asymmetric information in fads models. Finance amch&stic, 10, no 2, 159-177 (2006)

. Hitsuda, M.: Representation of Gaussian processes equival@fiéher process. J. Math. 5, Osaka, 299-312(1968)

. Revuz, D., Yor, M.: Continuous Martingales and Browniantin. Grundlehren der Mathematischen Wissenschaften,
vol. 293, 3rd edn, Berlin Heidelberg New York, Springer, 429

A WN



