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Asymmetric Information in a Market with n+1 Brownian
Motions
Asimmetria Informativa in un Mercato con n+1 Moti Browniani

Luigi Romano and Donato Scolozzi

Abstract This paper covers asymmetric information in financial markets from a micro perspective. Particu-
larly, we aim to extend the asset pricing framework introduced by Guasoni [2], who analyzes models price
dynamics with both a martingale component, described by permanent shocks, and a stationary component,
given by temporary shocks. First, we derive a generalization of this asset pricing model usingn Brown-
ian Motions, including an Ornstein-Uhlenbeck process as the (n+1)th element. We find non-Markovian
dynamics for the partially informed agents, which questions the validity of the efficient market hypothe-
sis. Moreover, we compare the positions of informed and partially informed agents. Thereby, the filtration
for informed agents is larger and initially specified, whereas the filtration for partially informed agents is
smaller and obtained from the Hitsuda representation [3]. For both agents, our study yields similar results
as the findings of Guasoni, for the logarithmic utility maximization problem.

Abstract Questo lavoro esamina l’asimmetria informativa nei mercati finanziari applicabile anche ad una
micro prospettiva. In particolare, ci proponiamo di estendere il lavoro sull’asset pricing introdotto da Gua-
soni [2], il quale analizza le dinamiche dei prezzi che presentano sia una componente martingala, descritta
da shocks permanenti, sia una componente stazionaria, descritta da shocks temporanei. Inizialmente, deriv-
iamo una generalizzazione di questo modello sull’asset pricing, utilizzando n Moti Browniani, prevedendo
come(n+1)th elemento un processo Ornstein-Uhlenbeck. Otteniamo unadinamica non Markoviana per
gli agenti parzialmente informati, mettendo in tal modo in discussione la validit́a delle ipotesi di mercato
efficiente. Inoltre, confrontiamo le posizioni degli agenti informati con quelle degli agenti parzialmente in-
formati. In questo quadro, la filtrazione per gli agenti parzialmente informatíe piú grande e inizialmente
assegnata, mentre la filtrazione per gli agenti non informati é piú piccola e ottenuta attraverso la rappresen-
tazione di Hitsuda [3]. Per entrambi gli agenti,nell’ambito del problema della massimizzazione dell’utilitá
logaritmica, i nostri studi forniscono risultati simili a quelli ottenuti da Guasoni.

Key words: Stochastic Process, Hitsuda representation, Asymmetric information.
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2 Luigi Romano and Donato Scolozzi

1 The model

We consider a financial market where we have a riskless assetD togheter with a risky assetS. The market
interest rate is assumed to be deterministic. In order to describe the dynamics of the risky asset, we consider
a probability space(Ω ,F ,P) on whichn+1 are defined, withn∈, independent Brownian Motions:

(

B1
t

)

t∈[0,+∞[
,
(

B2
t

)

t∈[0,+∞[
, . . . (Bn

t )t∈[0,+∞[,
(

Bn+1
t

)

t∈[0,+∞[
.

If we set the real parameterλn+1 > 0, we consider the Ornstein-Uhlenbeck process
(

Un+1
t

)

t∈[0,+∞)
de-

fined by the following equation:

Un+1
t +λn+1

∫ t

0
Un+1

s ds= Bn+1
t , t ∈ [0,+∞[ (1)

which, as known, is given by the following relation:

Un+1
t =

∫ t

0
e−λn+1(t−s)dBn+1

s . (2)

Then, if we set the real numbersp j , with j = 1,2, ...,n,n+1, pn+1 > 0, with the firstn numbers not all
zero, let us consider the process(Yt)t∈[0,+∞) defined by:

Yt =
n

∑
j=1

p jB
j
t + pn+1U

n+1
t . (3)

Now, let us introduce two deterministic Lebesgue measurable functions

µ ,σ : [0,+∞[−→ [0,+∞[

such that
∀ T > 0 µ ∈ L1 ([0,T]) , σ ∈ L2 ([0,T]) .

Suppose that the price of the risky asset is described by the following differential equation:

dSt

St
= µtdt+σtdYt (4)

whose solution, as known, is given by the relation

St = S0exp

[

∫ t

0

(

µs−
σ2

s

2

)

ds+
∫ t

0
σsdYs

]

. (5)

Now we can describe the previous situation in the following way: we have an ”informed agent” who has
all the information provided by the all Brownian Motions, and a ”partially informed agent” who has all the
information provided by the processYt . The informed agent refers to the filtration

(

F 1
t

)

t∈[0,+∞[
obtained by

completing the natural filtration generated byn+1 Brownian MotionsB1
t ,B

2
t , ...,B

n
t ,B

n+1
t , which therefore

satisfies the usual conditions of completeness and right continuity. The partially informed agent, instead,
refers to the filtration

(

F 0
t

)

t∈[0,+∞[
generated by the processYt . Of course, we have thatF 0

t ⊂F 1
t , ∀ t. We

might state that the informed agent’s risky asset value evolves according to the assigned Brownian Motions;
therefore its value is determined by the following equation:

dSt

St
=
(

µt − pn+1λn+1σtU
n+1
t

)

dt+σt

n+1

∑
j=1

p jdBj
t (6)

which refers to the Brownian Motion
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Wt =

[

n+1

∑
j=1

p2
j

]− 1
2 n+1

∑
j=1

p jB
j
t

whose solution, ifx> 0 is the initial wealth, is given, as known, by the relation:

St = xe

∫ t

0

[

(

µs− pn+1λn+1σsU
n+1
s

)

−
1
2

(

n+1

∑
j=1

p2
j

)

σ2
s

]

ds+

[

n+1

∑
j=1

p2
j

] 1
2 ∫ t

0
σsdWs

. (7)

In the next section, we want to derive, for the partially informed agent, an analogous equation which repre-
sentsYt , and thereforeS, in terms of filtrationF 0 and of an opportune Brownian MotionB0.

2 Factorization of the Process Yt with respect to F 0.

In this section, we shall examine the Markov property ofYt and will determine, with respect to the filtration
F 0, the relative Brownian Motion which represents it.

Theorem 1. Yt is a Gaussian process, and moreover:

1. E(Yt) = 0 ∀t ∈ [0,+∞[

2. Γ (s, t) = cov(Ys,Yt) =

(

n

∑
j=1

p2
j

)

t ∧s+ p2
n+1

e−λn+1|t−s|−e−λn+1(t+s)

2λn+1
.

Proof. 1. Gaussian and mean zero properties are obvious. Besides:
2. Γ (s, t) = cov(Ys,Yt) = E (YsYt) =

E

([

n

∑
j=1

p jB
j
s+ pn+1U

n+1
s

][

n

∑
j=1

p jB
j
t + pn+1U

n+1
t

])

=

utilizing the independence property of the Brownian Motion, we have that:

=E

(

n

∑
j=1

p2
j B

j
sB

j
t

)

+E
(

p2
n+1U

n+1
s Un+1

t

)

=

n

∑
j=1

p2
j E
(

B j
sB

j
t

)

+ p2
n+1E

(

∫ s

0
e−λn+1(s−u)dBn+1

u

∫ t

0
e−λn+1(t−u)dBn+1

u

)

=

(

n

∑
j=1

p2
j

)

s∧ t + p2
n+1

∫ s∧t

0
e−λn+1(t−u)−λn+1(s−u)du=

(

n

∑
j=1

p2
j

)

s∧ t + p2
n+1e−λn+1(t+s) e2λn+1(s∧t)−1

2λn+1
=

(

n

∑
j=1

p2
j

)

s∧ t + p2
n+1

e−λn+1|t−s|−e−λn+1(t+s)

2λn+1

To verify the Markov property of the processYt , we recall the following result [4] (III.1.13)

Theorem 2. Yt is a Markov process if, and only if, we have:

Γ (s, t)Γ (t,u) = Γ (t, t)Γ (s,u), ∀ s≤ t ≤ u.

Theorem 3. 1. If we assume thatλn+1 = 0, then Yt is a Markov process.
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2. If we assume thatλn+1 > 0 then Yt is a Markov process if, and only if, we have one of the two following
conditions: pj = 0 ∀ j = 1,2, ...,n or pn+1 = 0.

Proof. Property 1 is obvious. Besides it is obvious thatYt is a Markov process if we havep j = 0 ∀ j =
1,2, ...,n or if we havepn+1 = 0.

Then let us have that:
Γ (s, t)Γ (t,u) = Γ (t, t)Γ (s,u) ∀ s≤ t ≤ u

and also suppose that
n

∑
j=1

p2
j > 0.

Considering the limit foru→+∞ of

Γ (s, t)Γ (t,u)

and
Γ (t, t)Γ (s,u)

we have:

t p2
n+1

e−λn+1(t−s)−e−λn+1(t+s)

2λn+1
= sp2

n+1
1−e−2λn+1t

2λn+1

which can be written also as follows

p2
n+1

[

eλn+1s−e−λn+1s

s
−

eλn+1t −e−λn+1t

t

]

= 0, ∀s≤ t

from which, considering the limit fort →+∞, we deduce the thesis:pn+1 = 0.

Now let us consider the processZ defined by the relation:

Zt =

(

n+1

∑
j=1

p2
j

)− 1
2 n

∑
j=1

p j

(

B j
t +λn+1

∫ t

0
B j

udu

)

+

(

n+1

∑
j=1

p2
j

)− 1
2

pn+1Bn+1
t . (8)

It verifies the following result:

Theorem 4. 1. Zt is a Gaussian process.
2. E(Zt) = 0 ∀t ∈ [0,+∞[.

3. cov(Zt ,Zs) = t ∧s+

(

n+1

∑
j=1

p2
j

)−1( n

∑
j=1

p2
j

)

∫ t

0

∫ s

0

(

λn+1+λ 2
n+1u∧v

)

dudv.

Proof. We note that theZ process can be re-written in the form:

Zt =

(

n+1

∑
j=1

p2
j

)− 1
2 n

∑
j=1

p j

(

B j
t +λn+1

∫ t

0
(t −u)dBj

u

)

+

(

n+1

∑
j=1

p2
j

)− 1
2

pn+1Bn+1
t =

(

n+1

∑
j=1

p2
j

)− 1
2 n

∑
j=1

p j

∫ t

0
[1+λn+1 (t −u)]dBj

u+

(

n+1

∑
j=1

p2
j

)− 1
2

pn+1Bn+1
t .

Therefore the covariance, because of the independence of the Brownian Motions, is given by:
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cov(Zt ,Zs) =

(

n+1

∑
j=1

p2
j

)−1 n

∑
j=1

p2
j

∫ t∧s

0
[1+λn+1 (t −u)] [1+λn+1 (s−u)]du+

+

(

n+1

∑
j=1

p2
j

)−1

p2
n+1 t ∧s

by means of standard calculations, we get the final relation.

Now let us consider the following function

f̃ (t,s) =−

(

n+1

∑
j=1

p2
j

)−1( n

∑
j=1

p2
j

)

(

λn+1+λ 2
n+1t ∧s

)

which is part of the covariance of the processZt . For our further aims, if 0≤ s≤ t, then the formula can
also be written as follows:

f̃ (t,s) =−

(

n+1

∑
j=1

p2
j

)−1( n

∑
j=1

p2
j

)

(

λn+1+λ 2
n+1s

)

∀ 0≤ s≤ t.

To simplify, if A2 =

(

n+1

∑
j=1

p2
j

)−1( n

∑
j=1

p2
j

)

, we can consider the following result:

Theorem 5. Considering the previous functioñf (t,s), the function

g̃(t,s) =







λn+1η(s) for 0≤ s≤ t

0 otherwise
(9)

verifies the following integral equation

f̃ (t,s) = g̃(t,s)−
∫ s

0
g̃(t,u) g̃(s,u)du ∀ 0≤ s≤ t (10)

andη (s) verifies the following Cauchy problem
{

η ′ (s) = λn+1
(

η(s)−A2
)

η (0) =−A2.
(11)

Proof. It is easy to verify this, considering the following integral equation:

−A2(λn+1+λ 2
n+1s

)

= λn+1η (s)−λ 2
n+1

∫ s

0
η2 (u)du ∀ 0≤ s≤ t

from which we easily obtain the Cauchy problem.
Its solution, as already verified, is given by the function:

η (s) = A
1−A− (1+A)e2Aλn+1s

1−A+(1+A)e2Aλn+1s
.

At this point we are able to enunciate the following theorem:

Theorem 6. 1. Consider a Brownian Motion
(

B0
t

)

t∈[0,+∞[
with respect to the filtration

(

F 0
t

)

t∈[0,+∞[
such

that we have:
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Zt = B0
t −

∫ t

0

(

∫ s

0
g̃(s,u)dB0

u

)

ds= B0
t −λn+1

∫ t

0

(

∫ s

0
η (u)dB0

u

)

ds.

2. Considering the function g: [0,T]× [0,T]−→ ℜ defined by

g(t,s) =







−λn+1η(s)eλn+1
∫ t
s η(u)du for 0≤ s≤ t

0 otherwise
(12)

we obtain that:

B0
t = Zt −

∫ t

0

(

∫ s

0
g(s,u)dZu

)

ds.

Proof. 1. The existence of the Brownian MotionB0
t is a consequence of [3], proposition 2, and also of the

fact that the function ˜g(t,s) verifies the following integral equation:

f̃ (t,s) = g̃(t,s)−
∫ s

0
g̃(t,u) g̃(s,u)du ∀ 0≤ s≤ t.

2. To verify the relation

B0
t = Zt −

∫ t

0

(

∫ s

0
g(s,u)dZu

)

ds

it is sufficient to utilize [1] or [2] or [3]. The functiong(t,s) is called the negative resolvent of ˜g(t,s).

Theorem 7. The processes Yt and Z verify the following equation:

Yt +λn+1

∫ t

0
Yudu=

(

n+1

∑
j=1

p2
j

) 1
2

Zt

so we have

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 ∫ t

0
e−λn+1(t−u)dZu.

Proof. We have that:

Yt −

(

n+1

∑
j=1

p2
j

) 1
2

Zt =
n+1

∑
j=1

p jB
j
t + pn+1U

n+1
t −

n+1

∑
j=1

p j

(

B j
t +λn+1

∫ t

0
B j

udu

)

− pn+1Bn+1
t =

−λn+1

∫ t

0

[

n+1

∑
j=1

p jB
j
u+ pn+1U

n+1
u

]

du=−λn+1

∫ t

0
Yudu.

By integration we easily obtain the second relation.

It is now possible to establish the link between the processYt and the Brownian MotionB0
t . Namely, we

have the following (fundamental) result:
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Theorem 8. Let Yt =
n

∑
j=1

p jB
j
t + pn+1U

n+1
t and

(

F 0
t

)

t∈[0,+∞[
be its completed natural filtration. As we have

already noted, B0t is a Brownian Motion with respect to the filtration
(

F 0
t

)

t∈[0,+∞[
of Yt . Besides, we suppose

that:

1.

B0
t =

(

n+1

∑
j=1

p2
j

)− 1
2 [

Yt +λn+1

∫ t

0

(

∫ s

0
[1+η(u)]eλn+1

∫ s
u η(l)dldYu

)

ds

]

2.

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 ∫ t

0

[

e−λn+1(t−u) [1+η(u)]−η(u)
]

dB0
u

3.

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [

B0
t −λn+1

∫ t

0

[

e−λn+1(t−u)
(

B0
u+

∫ u

0
η(v)dB0

v

)]

du

]

4.

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [

B0
t −λn+1

∫ t

0

(

∫ s

0
[1+η(u)]e−λn+1(s−u)dB0

u

)

ds

]

.

Proof. 1. In order to obtain the first relation, consider

B0
t = Zt −

∫ t

0

(

∫ s

0
g(s,u)dZu

)

ds

in which we substituteZt for the following equation

Zt =

(

n+1

∑
j=1

p2
j

)− 1
2 [

Yt +λn+1

∫ t

0
Yudu

]

so that we obtain:

B0
t =

(

n+1

∑
j=1

p2
j

)− 1
2 [

Yt +
∫ t

0

(

λn+1Ys−
∫ s

0
g(s,u)dYu−

∫ s

0
g(s,u)Yudu

)

ds

]

.

Utilizing the method of integration by parts in the following integral
∫ s

0
g(s,u)Yudu

and if we supposeG(s,u) =
∫ u

0
g(s,v)dv, it is easy to obtain the relation:
∫ s

0
g(s,u)Yudu= λn+1Ys−

∫ s

0
G(s,u)dYu

substituting inB0
t , we obtain the relation 1.

2. In the relation
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Yt =

(

n+1

∑
j=1

p2
j

) 1
2 ∫ t

0
e−λn+1(t−s)dZs

we substituteZu with the relation

Zt = B0
t −λn+1

∫ t

0

(

∫ s

0
η (u)dB0

u

)

ds

so that we obtain

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [∫ t

0
e−λn+1(t−s)dB0

s −λn+1

∫ t

0

(

∫ s

0
η(u)e−λn+1(t−s)dB0

u

)

ds

]

which, applying the Fubini Tonelli theorem, can be written in the form:

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [∫ t

0
e−λn+1(t−s)dB0

s −λn+1

∫ t

0

(

∫ t

u
η(u)e−λn+1(t−s)ds

)

dB0
u

]

which, simplified, gives the relation 2.
3. In order to obtain the above relation, we consider the equation

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [∫ t

0
e−λn+1(t−s)dB0

s −λn+1

∫ t

0

(

∫ s

0
η(u)e−λn+1(t−s)dB0

u

)

ds

]

utilizing the method of integration by parts on the first integral, we obtain:

∫ t

0
e−λn+1(t−s)dB0

s = B0
t −λn+1

∫ t

0
e−λn+1(t−s)B0

sds.

Substituting and simplifying we obtain the result 3.

4. In equation 1, ifWt =

(

n+1

∑
j=1

p2
j

)− 1
2

Yt , we have

B0
t =Wt +λn+1

∫ t

0

(

∫ s

0
[1+η(u)]eλn+1

∫ s
u η(l)dldWu

)

ds

which, written in standard form

B0
t =Wt −

∫ t

0

(

∫ s

0
−λn+1 [1+η(u)]eλn+1

∫ s
u η(l)dldWu

)

ds

identifies the following Volterra Kernel

k(t,s) =







−λn+1 [1+η(s)]eλn+1
∫ t
s η(l)dl for 0≤ s≤ t

0 otherwise.

Utilizing [2], we also identify the relative negative resolvent k̃(t,s) through the relation
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k̃(t,s) =







−k(t,s)e
∫ t
s k(u,u)du for 0≤ s≤ t

0 otherwise

from which, by substitution, we obtain the following relation:

k̃(t,s) =







λn+1 [1+η(s)]e−λn+1(t−s) se 0≤ s≤ t

0 otherwise.

As a consequence we have

Wt = B0
t −

∫ t

0

(

∫ s

0
k̃(s,u)dB0

u

)

ds

from which, we deduce relation 4 :

Yt =

(

n+1

∑
j=1

p2
j

) 1
2 [

B0
t −λn+1

∫ t

0

(

∫ s

0
[1+η(u)]e−λn+1(s−u)dB0

u

)

ds

]

.

On the basic of result 4 of the previous theorem, the asset price dynamics for the partially informed
agent, can be shown evolving as follows:

dSt

St
= µtdt+σt

(

n+1

∑
j=1

p2
j

) 1
2 [

dB0
t −λn+1

(

∫ t

0
[1+η(u)]e−λn+1(t−u)dB0

u

)

dt

]

(13)

which can be re-written in the form:

dSt

St
=



µt −λn+1

(

n+1

∑
j=1

p2
j

) 1
2 (

σt

∫ t

0
[1+η(u)]e−λn+1(t−u)dB0

u

)



dt+σt

(

n+1

∑
j=1

p2
j

) 1
2

dB0
t . (14)

Conversely, for the informed agent, the asset price dynamics can be shown evolving in the following equa-
tion:

dSt

St
=
(

µt − pn+1λn+1σtU
n+1
t

)

dt+σt

n+1

∑
j=1

p jdBj
t (15)

which refers to the Brownian Motion
[

n+1

∑
j=1

p2
j

]− 1
2 n+1

∑
j=1

p jB
j
t .

3 The value functions for two agents.

As already said in the previous section, the informed agent considers the underlying value starting from an
initial wealth x > 0, and investingHt units of St . He obtains the self-financed value of wealthXt , at time
t, through all the assigned Brownian Motion. Conversely the partially informed agent, invests the same
monetary itemx> 0, and he utilizes the Brownian MotionB0

t in order to assess the dynamics of the wealth
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obtained. In this section, we want to examine these two situations, and we also want to evaluate the utility
functions the two agents use.

3.1 The value function for the informed agent.

Let x > 0 be the initial monetary item that the partially informed agent invests in assetSt . To do this, he
utilizes an opportune stochastic processHt which, at timet, represents the asset shares used. So he obtains
the value (self-financed) of wealthXt , at timet, through the following relation:

Xt = x+
∫ t

0
HsdSs. (16)

As already said, the processHt , which will be said admissible, must be predictable with respect to filtration
(

F 1
t

)

t∈[0,+∞[
, integrable with respect to processSt and such that almost certainly we also haveXt > 0,

∀t ∈ [0,T].
Finally, if U is the utility function, the agent maximizes the mean utility of the wealth obtained in the

final instantT. Thereby it solves the following problem:

sup

{

E

(

U

(

x+
∫ T

0
HtdSt

))

: Ht admissible

}

. (17)

In order to guarantee the positivity of the wealth produced at every instantt, we can consider the processπt

defined by the relationHt = πt
Xt
St

. Therefore we have:

Xt = x+
∫ t

0
πs

Xs

Ss
dSs (18)

from which the deduction
dXt

Xt
= πt

dSt

St
(19)

that is to say
dXt

Xt
= πt

(

µt − pn+1λn+1σtU
n+1
t

)

dt+πtσt

n+1

∑
j=1

p jdBj
t . (20)

If we isolate the Brownian Motion:

Wt =

[

n+1

∑
j=1

p2
j

]− 1
2 n+1

∑
j=1

p jB
j
t

we have:

dXt

Xt
= πt

(

µt − pn+1λn+1σtU
n+1
t

)

dt+

[

n+1

∑
j=1

p2
j

] 1
2

πtσtdWt . (21)

Therefore the value of wealthXt , at timet, is given by the relation

Xt = xe

∫ t

0

[

πs
(

µs− pn+1λn+1σsU
n+1
s

)

−
1
2

(

n+1

∑
j=1

p2
j

)

π2
s σ2

s

]

ds+

[

n+1

∑
j=1

p2
j

] 1
2 ∫ t

0
πsσsdWs

(22)

and, as a consequence, at final instantT we have:
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XT = xe

∫ T

0

[

πs
(

µs− pn+1λn+1σsU
n+1
s

)

−
1
2

(

n+1

∑
j=1

p2
j

)

π2
s σ2

s

]

ds+

[

n+1

∑
j=1

p2
j

] 1
2 ∫ T

0
πsσsdWs

. (23)

Now, considering the logarithmic utility function, we havethe following result:

Theorem 9. LetU (y) = logy. The process

πs =
µs− pn+1λn+1σsUn+1

s
(

n+1

∑
j=1

p2
j

)

σ2
s

provides the optimal investment share and the relative value function is given by:

u(x) = logx+
1

2

(

n+1

∑
j=1

p2
j

)E

[

∫ T

0

(

µs− pn+1λn+1σsUn+1
s

)2

σ2
s

ds

]

.

Proof. ∀ πs admissible, it results

U (XT) = log(XT) = logx+
∫ T

0

[

πs
(

µs− pn+1λn+1σsU
n+1
s

)

−
1
2

(

n+1

∑
j=1

p2
j

)

π2
s σ2

s

]

ds+

[

n+1

∑
j=1

p2
j

] 1
2 ∫ T

0
πsσsdWs

as a consequence, considering the mean value, we have:

E (log(XT)) = logx+E

[

∫ T

0

[

πs
(

µs− pn+1λn+1σsU
n+1
s

)

−
1
2

(

n+1

∑
j=1

p2
j

)

π2
s σ2

s

]

ds

]

.

We obtain the relative maximun value, applying the results that allow to derive an integral. As a consequence
the portfolio share is given by

πs =
µs− pn+1λn+1σsUn+1

s
(

n+1

∑
j=1

p2
j

)

σ2
s

therefore the relative maximum value is:

u(x) = logx+
1
2

E













∫ T

0

(

µs− pn+1λn+1σsUn+1
s

)2

(

n+1

∑
j=1

p2
j

)

σ2
s

ds













from which we deduce the relation looked for.

We can re-write the value function, in the following way:

Theorem 10. We have:
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u(x) = logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
p2

n+1
n+1

∑
j=1

p2
j

[

Tλn+1

4
−

1−e−2Tλn+1

8

]

.

Proof. From the previous equation we have:

u(x) = logx+
1

2
n+1

∑
j=1

p2
j

E

[

∫ T

0

µ2
s

σ2
s

ds

]

−
pn+1λn+1

n+1

∑
j=1

p2
j

E

[

∫ T

0

µs

σs
Un+1

s ds

]

+
p2

n+1λ 2
n+1

2
n+1

∑
j=1

p2
j

E

[

∫ T

0

[

Un+1
s

]2
ds

]

.

Since the functionsµs andσs are deterministic, we have:

E

[

∫ T

0

µ2
s

σ2
s

ds

]

=
∫ T

0

µ2
s

σ2
s

ds.

Moreover it results:

E

[

∫ T

0

µs

σs
Un+1

s ds

]

= E

[

∫ T

0

(

µs

σs

∫ s

0
e−λn+1(s−u)dBn+1

u

)

ds

]

=
∫ T

0
E

(

µs

σs

∫ s

0
e−λn+1(s−u)dBn+1

u

)

ds=
∫ T

0

µs

σs
E

(

∫ s

0
e−λn+1(s−u)dBn+1

u

)

ds=
∫ T

0

µs

σs
0ds= 0.

Finally, we have:

E

[

∫ T

0

[

Un+1
s

]2
ds

]

=
∫ T

0
E

[

[

∫ s

0
e−λn+1(s−u)dBn+1

u

]2
]

ds=
∫ T

0

[

∫ s

0
e−2λn+1(s−u)du

]

ds=
T

2λn+1
−

1−e−2λn+1T

4λ 2
n+1

.

In this way we have the thesis.

3.2 The value function for the partially informed agent.

Similarly, the partially informed agent considers the investment shares provided through processesKt ad-
missible: they are predictable with respect to the filtration

(

F 0
t

)

t∈[0,+∞[
, integrable with respect to the

processSt and such thatXt > 0 almost certainly and∀t ∈ [0,T]. If V is his utility function, then the agent
maximizes his expected utility of wealth at timeT. Therefore it solves the following problem:

max

{

E

(

V

(

x+
∫ T

0
KtdSt

))

: Kt admissible

}

. (24)

Also in this case the agent considers the processκt defined by the relation:

Kt = κt
Xt

St
.

Therefore we have:

Xt = x+
∫ t

0
κs

Xs

Ss
dSs (25)

from which the deduction
dXt

Xt
= κt

dSt

St
(26)
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that is to say, if

νt =−λn+1

∫ t

0
[1+η(u)]e−λn+1(t−u)dB0

u

we have:

dXt

Xt
= κt



µt +

(

n+1

∑
j=1

p2
j

) 1
2

νtσt



dt+κtσt

(

n+1

∑
j=1

p2
j

) 1
2

dB0
t . (27)

The wealth at timet, if x> 0 is the initial one, is therefore given by

Xt = xe

∫ t

0



κs



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs



−
1
2

κ2
s σ2

s

(

n+1

∑
j=1

p2
j

)



ds+
∫ t

0
κsσs

(

n+1

∑
j=1

p2
j

) 1
2

dB0
s

(28)

and, as a consequence, at final timeT we have:

XT = xe

∫ T

0



κs



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs



−
1
2

κ2
s σ2

s

(

n+1

∑
j=1

p2
j

)



ds+
∫ T

0
κsσs

(

n+1

∑
j=1

p2
j

) 1
2

dB0
s

. (29)

Considering now the logarithmic utility function, we have the following result:

Theorem 11. LetV (y) = logy. The process

κs =

µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs

(

n+1

∑
j=1

p2
j

)

σ2
s

where

νs =−λn+1

∫ s

0
[1+η(u)]e−λn+1(s−u)dB0

u

provides the optimal investment share. The relative value function is given by:

v(x) = logx+
1

2

(

n+1

∑
j=1

p2
j

)E







∫ T

0

1
σ2

s



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs





2

ds






.

Proof. ∀ κs admissible, it results

V (XT) = log(XT) = logx+
∫ T

0



κs



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs



−
1
2

(

n+1

∑
j=1

p2
j

)

κ2
s σ2

s



ds+

[

n+1

∑
j=1

p2
j

] 1
2 ∫ T

0
πsσsdWs

as a consequence, considering the mean value, we obtain that:
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E (log(XT)) = logx+E





∫ T

0



κs



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs



−
1
2

(

n+1

∑
j=1

p2
j

)

κ2
s σ2

s



ds



 .

The relative maximum value is obtained applying the theorems which allow to derive an integral. As a
consequence the portfolio share which maximizes the resultis given by

κs =

µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs

(

n+1

∑
j=1

p2
j

)

σ2
s

therefore the relative maximum value is:

v(x) = logx+
1
2

E



















∫ T

0



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs





2

(

n+1

∑
j=1

p2
j

)

σ2
s

ds



















from which, we deduce the relation looked for.

We can re-write the value function, in the following way:

Theorem 12. We have:

v(x) = logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
λ 2

n+1

2

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds.

Proof. From the equation

v(x) = logx+
1

2

(

n+1

∑
j=1

p2
j

)E







∫ T

0

1
σ2

s



µs+

(

n+1

∑
j=1

p2
j

) 1
2

νsσs





2

ds







we have:

v(x) = logx+
1

2
n+1

∑
j=1

p2
j

E

[

∫ T

0

µ2
s

σ2
s

ds

]

+
1

(

n+1

∑
j=1

p2
j

) 1
2

E

[

∫ T

0

µs

σs
νsds

]

+
1
2

E

[

∫ T

0
ν2

s ds

]

=

logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
1

(

n+1

∑
j=1

p2
j

) 1
2

∫ T

0

µs

σs
E [νs]ds+

1
2

E

[

∫ T

0
ν2

s ds

]

=
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logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
1

(

n+1

∑
j=1

p2
j

) 1
2

∫ T

0

µs

σs
E [νs]ds+

1
2

E

[

∫ T

0
ν2

s ds

]

.

Besides it results that:

E [νs] = E

[

−λn+1

∫ s

0
[1+η(u)]e−λn+1(s−u)dB0

u

]

= 0.

Finally we have:

E

[

∫ T

0
ν2

s ds

]

=
∫ T

0
E
[

ν2
s

]

ds=
∫ T

0
E

[

(

−λn+1

∫ s

0
[1+η(u)]e−λn+1(s−u)dB0

u

)2
]

ds=

λ 2
n+1

∫ T

0

[

∫ s

0
[1+η(u)]2e−2λn+1(s−u)du

]

ds.

From the results obtained we have the thesis.

In order to compare the two value functions so far obtained, we consider the following theorem:

Theorem 13. We have:

lim
T→+∞

1
T

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds=
(1−A)2

2λn+1

where A=

(

n+1

∑
j=1

p2
j

)− 1
2
(

n

∑
j=1

p2
j

) 1
2

.

Proof. First, we verify that

lim
T→+∞

∫ T

0
[1+η (u)]2e−2λn+1(T−u)du=

(1−A)2

2λn+1

if, within integral, we substitutev= T −u, we obtain:

∫ T

0
[1+η (T −v)]2e−2λn+1(v)dv.

Besides, if we denote the indicator function of the interval[0,T] with I[0,T], we can write the limit as

lim
T→+∞

∫ +∞

0
[1+η (T −v)]2e−2λn+1(v)I[0,T] (v)dv.

Now, note that, since the lim
T→+∞

η (T −v) = −A, the integrand function tends punctually to the function

v∈ [0,+∞[ 7→ (1−A)2e−2λn+1v. Moreover the integrand function verifies the following inequalities:

0≤ [1+η (T −v)]2e−2λn+1(v)I[0,T] (v)dv≤ (1+A)e−2λn+1v ∀ v∈ [0,+∞[

and the decrease and increase functions are integrable on[0,+∞[. The Lebesgue dominated convergence
theorem allows the following relation

lim
T→+∞

∫ +∞

0
[1+η (T −v)]2e−2λn+1(v)I[0,T] (v)dv=

∫ +∞

0
(1−A)2e−2λn+1vdv
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from which, integrating the second term, we have:

lim
T→+∞

∫ T

0
[1+η (u)]2e−2λn+1(T−u)du=

(1−A)2

2λn+1
,

from which, utilizing the standard results, we have that:

lim
T→+∞

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds=+∞.

Utilizing De L’Hopital’s rule, we get the thesis.

4 A comparison between the two value functions.

In the previous sections, we have determined the value functions for the two agents:u(x) for the informed
one,v(x) for the partially informed one. In this section, we want to focus on the divergence, whenT →
+∞,the two utility functions. Besides, whenT → +∞, the difference between the expected utility of two
agents,u(x) andv(x), diverges.

We can enunciate the following result:

Theorem 14. Consider the following properties:

1.

lim
T→+∞

u(x) = lim
T→+∞













logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
p2

n+1
n+1

∑
j=1

p2
j

[

2Tλn+1−1+e−2Tλn+1

8

]













=+∞

2.

lim
T→+∞

v(x) = lim
T→+∞













logx+
1

2
n+1

∑
j=1

p2
j

∫ T

0

µ2
s

σ2
s

ds+
λ 2

n+1

2

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds













=+∞

3.

lim
T→+∞

u(x)−v(x)
T

=
λn+1

2

(

n

∑
j=1

p2
j

) 1
2
(

n+1

∑
j=1

p2
j

)−1




(

n+1

∑
j=1

p2
j

) 1
2

−

(

n

∑
j=1

p2
j

) 1
2




as a consequence we have:

lim
T→+∞

[u(x)−v(x)] = +∞.

Proof. The first two properties can be easily verified. About property 3, we note that

u(x)−v(x) =
p2

n+1
n+1

∑
j=1

p2
j

[

2Tλn+1−1+e−2Tλn+1

8

]

−
λ 2

n+1

2

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds
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and therefore

u(x)−v(x)
T

=
p2

n+1
n+1

∑
j=1

p2
j

[

2Tλn+1−1+e−2Tλn+1

8T

]

−
λ 2

n+1

2T

∫ T

0

[

∫ s

0
[1+η (u)]2e−2λn+1(s−u)du

]

ds

as a consequence we have

lim
T→+∞

u(x)−v(x)
T

=
λn+1

4

















p2
n+1

n+1

∑
j=1

p2
j

−

















1−

(

n

∑
j=1

p2
j

) 1
2

(

n+1

∑
j=1

p2
j

) 1
2

















2















it follows that

lim
T→+∞

u(x)−v(x)
T

=
λn+1

4

















p2
n+1

n+1

∑
j=1

p2
j

−1+2

(

n

∑
j=1

p2
j

) 1
2

(

n+1

∑
j=1

p2
j

) 1
2

−

n

∑
j=1

p2
j

n+1

∑
j=1

p2
j

















and therefore

lim
T→+∞

u(x)−v(x)
T

=
λn+1

4

p2
n+1−

n+1

∑
j=1

p2
j +2

(

n

∑
j=1

p2
j

) 1
2
(

n+1

∑
j=1

p2
j

) 1
2

−
n

∑
j=1

p2
j

n+1

∑
j=1

p2
j

that is to say

lim
T→+∞

u(x)−v(x)
T

=
λn+1

2

(

n

∑
j=1

p2
j

) 1
2
(

n+1

∑
j=1

p2
j

) 1
2

−
n

∑
j=1

p2
j

n+1

∑
j=1

p2
j

from which, we obtain:

lim
T→+∞

u(x)−v(x)
T

=
λn+1

2

(

n

∑
j=1

p2
j

) 1
2

n+1

∑
j=1

p2
j





(

n+1

∑
j=1

p2
j

) 1
2

−

(

n

∑
j=1

p2
j

) 1
2




which, simplified, provides the thesis.
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