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Rational Theory
of Warrant
Pricing

Introduction

This is a compact report on desultory re-
searches stretching over more than a dec-
ade.

In connection with stock market fluctu-
ations, L. Bachelier', a French mathemati-
cian, discovered the mathematical theory
of Brownian motion five years before Ein-
stein’s classic 1905 paper. Bachelier gave
the same formula for the value of a warrant
(or “call” or put) based upon this “abso-
lute” or “arithmetic” process that Dr. R.
Kruizenga® developed years later in a thesis
under my direction. Under this formula, the
value of a warrant grows proportionally
with the square-root of the time to go be-
fore elapsing; this is a good approximation
to actual pricing of short-lived warrants, but
it leads to the anomalous result that a long-
lived warrant will increase in price in-
definitely, coming even to exceed the price
of the common stock itself—cven though
ownership of the stock is equivalent to a
perpetual warrant exercisable at zero price‘.

The anomaly appm'cntly came because
Bachelier had forgotten that stocks possess
limited liability and thus cannot become
negative, as is implied by the arithmetic
Brownian process. To correct this, T intro-
duced the “geometric” or “economic Brown-
jan motion,” with the property that every
dollar of market value is su{;jcct to the
same multiplicational or percentage fluc-
tuations per unit time regardless of the ab-

o Acknowledgment is made to the Carnegie Corpora-
tion for research aid, but sole responsibility for the
results is mine.
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solute price of the stock. This led to the
log-normal process for which the value of
a call or warrant has these two desired

propertics: for short times, the \/t law holds
with good approximation; and for t > «,
the value of the call approaches the value
of the common stock. (All the above as-
sumes that stock-price changes represent a
“fair-game” or martingale—or certain trivial
gencralizations thereof to allow for a fair
veturn. In an unpublished paper and lec-
ture, T made explicit the derivation of this
property from the consideration that, if
everyone could “know” that a stock would
rise in price, it would already be bid up in
price to make that impossible. See my
companion paper appearing in this same
issue, entitled “Proof That Properly Antici-
pated Prices Fluctuate Randomly.”)

The above results, which have been pre-
sented in lectures since 1953 at M.LT,
Yale, Carncgie, the American Philosophical
Society, and elsewhere have also been pre-
sented by such writers as Osbome,” Spren-
kle,! Boness, Alexander,” and no doubt
others.

However, the theory is incomplete and
unsatisfactory in the following ~respects:
L. Tt assumes, explicitly or implicitly, that
the mean rate of return on the warrant is
no more than on the common stock itself,
despite the fact that the common stock may
be paying a dividend and that the warrant
may have a different riskiness from the
common stock.

3Ref. (31
Ref. (4],
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2. In consequence of the above, the theory
implies that warrants (or calls) will never
be converted prior to their elapsing date.
Necessarily, thercfore, no proper theory is
provided for the conditions under which
warrants will cease to be outstanding,
3. The existing theory, in effect, assumes
that the privilege of converting the warrant
at any time in the interval (rather than at
the end of the period) is worth literally
nothing at all.
4, Tinally, the theory leads to the men-
tioned result, that the price of a perpetual
warrant should be literally equal to the
stock itself—a paradoxical result, and one
that does not agree with the observed facts
of life (for example, the fact that perpetual
Tri-Continental Warrants sell for less than
their equivalent amount of common stock,
and are in fact being continuously con-
verted into stock in some positive volume),
- The present paper publishes, 1 believe
for the first time, the more difficult theory
of rationally evaluating a warrant, taking
account of the extra worth of the right to
convert at any time in the interval and de-
ducing the value of the common stock
above which it will pay to exercise the
warrant. 1 am glad to acknowledge the
valuable contribution of Professor Henry P,
McKean, Jr. of the M.LT. Department of
Mathematics, in effecting certain exact solu-
tions and in proving the properties of the
general solutions. His analysis appears as a
self-contained mathematical appendix. It
will be clear that there still remain many
unsolved problems. (For example, exact
explicit solutions are now known in the
case of perpetual warrants only for three
cases: the log-normal, the log-Poisson, and
the case where the only two possibilities are
those of instantaneous complete loss or of
a gain growing exponentially in time, Only
for this Jast case is an exact explicit solution
known for the finite-time warrant. These
exact solutions, which arc all duc to Mc-
Kean, correspond to various intuitive con-
jectures and empirical patterns and can be
approximated by the solutions to the sim-
pler problem of discrete, albeit small, time
periods.)

The Postulated Model

Let the price of a particular common stock
be defined for all time and be denoted by
X.. If we stand at the time t, we know with
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certainty X, (and all of its past values
Xea). Its future price X.« is knowable only
in some probability sense, its probability
distribution being in the most general case
a function of the whole past profile of
Xiao A special  simplification  involves
postulating a Markov property to the proc-
ess, so that future X,,» has a distribution
depending only on present X,—namely

(l) Pl'ob{x“'r = X | X( = X} = P(X,X;T)-

Obviously, (1) involves the critical assump-
tion of a “stationary time series.”

I further posit that each dollar of pres-
ent value must be expected to have some
mean: gain per unit time, «, where « may
perhaps be zero or more likely will be a
positive quantity whose magnitude depends
on the dispersion riskiness of X, and the
typical investor’s utility aversion to risk.
(A decper theory would posit concave
utility and deduce the value of « for each
category of stocks.) This expected-returns
axiom says

(2) E[Xur|X] = f*XdP(XX,T)

=X, a=()

(Since money bears the safe retum of zero,
a cannot be less than zero for risk averters;
indeed, it cannot be less than the safe re-
turn or pure interest on funds, if such exists.
If utility were convex rather than concave,
people might be willing to pay for riskiness,
and @ might be permitted to be negative—
but not here.)

The integral in (2) is the usual Stieltjes
integral: if the probability  distribution
P(X,XgT) has a regular probability den-
sity aP(X,X;T)/0X = p(X,Xy;T), we have
the usual Riemann integral §*Xp(X,X;T)dX;
it only discrete probabilities are involved,
at X=X, with probabilities P,(X;T),
the integral of (2) Dbecomes the sum
3XiPi(XyT), which may involve a finite
or countably-infinite  number of terins.
The reader can use the modern notation
S, XP(dX,X;;T) rather than that of (2) if
he prefers.

In (2) the limit of integration is given as
0 rather than —, because of the important
phenomenon of limited liability. A man
cannot lose more than his original invest-
ment: General Motors stock can drop to
zero, but not below,
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If the prol)ul)ility of a future price X
depends solely on knowledge of X, alone,
having the Markov property of being in-
dependent of further knowledge of past
prices such as X, then

(3) P(X!wrlxnxu.\) = P(X..T[X.)

and (1) will satisfy the so-called Chapman-
Kolmogorov equation

(4) P(xh'l‘)xl;'l‘)
[ P(Xoms T — 8)dP(x.X,;8), 0 =S =T,

3

Remarks about Alternative Axioms
To sce the meaning of this, suppose t takes
on only discrete integral values. Then,
without the Markov property (3), (N
would have the general form

(5) Pl‘Ol){Xl,k éX|X(,X|_|, e .}

= (X)X‘)‘ 11y v ¢ -;l\)
with

(2)" E[Xu|XiXe, o] =
£ XAP(X,X0Xoy « - 51) = X

Instead of (4), we would have
(4)" P(XewXo. Xy - 52) =
J2P (X XXy, o 51)
AP (Xe, XX - 51)

where the integration is over Xu, and
where X, is scen to enter in the first factor
of the integrand. Even without the Markov
axiom of (3), from (2)" applicd to the next
period’s gains, we could deduce the truth
of (2) for two periods’ gains as well and, by
induction, for all-periods’ gains—namely

E[XoulXoXom, -]
= £ XAP (X, X0 KXo + - 52)
= [+ Xd f* P(Xx XX - 51)

(]P(X,ann-l, o ~;1)
(6)

=f* exdP (%, X0, X1o + 0 31)

= GMX..

Then, by induction, (2) or
E[Xuklxl)xl-l; e ] = e"X,

RATIONAL THEORY

follows from the weak assumption of (5)
and (2)" alone even when the Markov
property  (3) and Chapman-Kolmogorov
property (4) do not necessarily hold.

However, 1 shall assume (3), and a for-
tiori (4), in order that the rational price
of a warrant be a function of current com-
mon stock price X, alone and not be (at
this level of approximation) a functional of
all past values Xir. A more elaborate
theory would introduce such past values, if
only to take account of the fact that the
numerical value of « will presumably de-
pend upon the estimate from past data that
risk averters make of the riskiness they
are getting into when holding the stock.

I might finally note that Bachelier as-
sumed implicitly or explicitly

() P(XxT) = P(XxT), a=0

so that an absolute Brownian motion or
random walk was involved. He thought that
he could deduce from these assumptions
alone the familiar Gaussian distribution—or,
as we would say since 1923, a Wiener proc-
ess—but his lack of rigor prevented him
from secing that his form of (4):

(8) P(X-x;T) =
I P(X-x-y;T-S)dP(y;S) ,0=8=T

does have for solutions, along with the
Gaussian distribution, all the other mem-
bers of the Lévy-Khintchin family of in-
finitely-divisible distributions’,  including
the stable distribution of Lévy-Pareto, the
Poisson distribution, and various combina-
tions of Poisson distributions.

The “Geometric or Relative Economic
Brownian Motion”

As mentioned, Bachelier’s absolute Brown-
jan motion of (7) leads to negative values
for X,,+ with strong probabilities. Hence, a
better hypothesis for an cconomic model
than P(X,x;T) = P(X — xT) is the fol-
lowing

(9) P(x,x;T)EP(—Xx—;T), x>0

P(X,0;T) =1forallX>0.

TRefs. (8], 19].
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By working with ratios instead of algebraic
differences, we consider logf’)arithmic or per-
ccntaie changes to be subject to uniform
probabilities. This means that the fitst dif-
terences of the logarithms of prices are dis-
tributed in the usual absolute Brownian
way. Since the arithmetic mean of logs is
the geometric mean of actual prices, this
modified random walk can be called the
geometric Brownian motion in contrast to
the absolute or arithmetic Brownian mo-
tion.

The log-normal distribution bears to the
geometric Brownian motion the same re-
lation that the normal distribution does to
the ordinary Brownian motion. As the writ-
ings of Mandelbrot’ and Fama' remind
us, there are non-log-normal stable Parcto-
Lévy distributions (of logs) satisfying the
following form of (4):

(10) P (ﬁ;T) =

X
IR (-)—{;T-s )dP (-y—,s) ,
y X

Some of our general results require only
that (1), (2), and (4) hold. But most of
our explicit solutions are for multiplicative
processes, in which (9), (10) and the fol-
lowing hold:

(11) E[Xua|X\] = f:XdP (XﬁT)

— X(eﬂ" [43 = O-

Actually, (9) and (10) alone require that
the family P(X;T) is determined once a
single admissible function P(X;T,) = P(X)
is given, as for T, = 1, Then if « is defined
by

(12) e™ = E[Xun/X:] = [*XdP(X),

(11) is provable as a theorem and need not
be posited as an axiom. McKean’s appendix
assumes the truth of (9) and (10) through-
out, It is known from the theory of in-
finitely-divisible processes that P(X) above
cannot be an arbitrary distribution but
must have the characteristic function for its
log, Y = log X, of the Lévy-Khintchin form:

“Ref, {10].
YRef, (111,
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(13) E[e™] = f2,e"dP(e") =t

g() = pir +

" ix L+
J(elh___l_ 1]+Zzg ) ;I;[" dl’I(Z)’

where y(z) is itself a distribution function,
In the special cases of the log-normal dis-
tribution, the log-Poisson distribution, and
the log-Lévy distribution, we have respec-
tively

s
) = pik — —— £?
g(\) = pi 3

(14) g(A) =e™ —i
g(A) = ik — y\* [1 4
iBOV\tan («®/2)], 0 = o = 2.

All of (14) is on the assumption that

o B(X) = P(0) = 0.
If P(0) >0, there is a finite probability of
complete ruin in any time interval, and
as the interval approaches infinity that
probability approaches 1. An example (the
only onc for which exact formulas for
rational warrant pricing of all durations are
known) is given by

Pl'Ob{X..T = X(OIT} = C-bT
(15)
Prob{X,: =0} =1—¢™

wherca =a—b=0.

ab>0

Letting w(X;T) be an infinitely-divisible
(multiplicative) function satisfying (13), the
most gencral pattern would be one where

P(O,T) = 1—c™ b>0
(16) P(XT) = ¢ w(Xt) +P(0,T)
withP(o,T) =¢™1 4+ 1—e" =1,

One final remark. Osborne, by an ob-
scure argument that appeals to Weber-
Fechner and to clearing-of-frec-markets
reasoning, purports to deduce, or make
plausible, the axiom that the geometric
mean of the distribution P(X/x;T) is to
be unity or that the expected value of the
logarithmic difference is to be a random
walk without mean bias or drift. Actually,
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if « = 0in (2), so that absolute price is
an unbiased martingale, the logarithmic dif-
ference must have a negative drift. For a
sufficiently positive, and depending on the
dispersion of the log-normal process, the
logarithmic difference can have any alge-
braic sign for its mean bias. Only if one

1
could be sure that P(X/X;T) = P(1;T) = -

s that the chance of a rise in price could
be known to be always the same as the
chance of a fall in price, would the gratui-
tous Osborne condition turn out to be true.

If P(X,x; T) corresponds to a martin-
gale or “fair game,” with « = 0 as in the
Bachelier case, the arithmetic mean of the
ratio X/x is always exactly 1 and the geo-
metric mean, being less than the arithmetic
mean if P has any dispersion at all, is less
than 1. Its logarithm, the mean or expected
value of log Xu/Xo is then negative, and
the whole drift of probability for P(X,x;T)
shifts leftward or 50\\!11\\'1\)‘(1 through time.
In long enough time, the probability ap-
proaches certainty that the investor will be
left with less than 1 cent of net worth—
i.c, P(04,x;0) = 1. This virtual certainty
of almost-complete ruin bothers many writ-
ers. They forget, or are not consoled by,
the fact that the gains of those (increas-
ingly few) people who are not ruined grow
prodigiously large-—in order to balance the
complete ruin of the many losers. There-
fore, many writers are tempted by Os-
borne’s condition, which makes the ex-
pected median of price X neither grow
above nor decline below X..

However, in terms of present discounted
value of future price, X", where the
mean yield o is used as the discount fac-
tor, most people’s net worth does go to
zero, and this occurs in ecery case of « = 0.
Relative to the expected growth of Xin—
ic., relative to X, Xix does become
negligible with great probability. I call this
condition “relative ruin,” with the warning
that a man may be comfortably off and still
be ruined in this sense. And I now state
the following general theorem:

Theorem of virtual certainty of (relative)

ruin: Let P(X,x;T) have non-zero dis-

persion, satisfying

.’: XdP(X,x;T) = ¢,

RATIONAL THEORY

P(X,x;T) =
‘f“ P(X,y; T — S)dP(y,x;S), a =0

as in (2) and (4). Then
lim P(Xe™, xT) =1

T 00
for all (X;x) >0
In the multiplicative-process  case,

P(X,x;T) = P(X/x;T) and the theo-
rem follows almost directly from the
fact that the geometric mean is less than
the arithmetic mean.

In words, the theorem says that, with
the passage of ever longer time, it be-
comes morc and more certain that the
stock will be at a level whose present dis-
counted value (discounted at the expected
yield « of the stock) will be less than 1
cent, or one-trillionth of a cent,

As is discussed on page 30, we can re-
place relative ruin by absolute ruin when-
ever the dispersion of the log-normal pro-
cess becomes sufficiently large. Thus, even
if « > 0 in accordance with positive ex-
pected yield, whenever the parameter of
dispersion o* > 2a, there is virtual cer-
tainty of absolute ruin. Indeed, for the log-
normal case we can sharpen the theorem to
read

lim PO+, T) =1, o*> 2

TN

Summary of Probability Model
The X.,r price of the common stock is as-
sumed to follow a probability distribution
dependent in Markov fashion on its X,
price alone and on the elapsed time:

(1) Prob{X, = XX} = PXXT)
(4) P(XHT)XI;T) =
2P (X T-8)dP(x X;8), 0= 8 =T

with the expected value of price assumed
to have a constant mean percentage growth
per unit time of «, or

(2) E[qu‘x(] =X, =
szdP(x’xl;T)s aE‘-O.

In many cases P(X,x;T) will be assumed
to be a multiplicative process, with the
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ratio X,,+/X. independent of all X,_y. Then
we can write

P(XxT) =P (-%;T ) ,

where P(u;T) belongs to the special family
of infinitely-divisible (multiplicative) dis-
tributions of which the log-normal, log-Pois-
son, and log-Lévy functions are special
cases. (If the Lévy coefficient «® in (14),
which must not be confused with « of (2),
were not 2 as in the log-normal case, we
can show that « in (2) will be infinite, Rul-
ing out that case will rule out the Lévy-
Pareto-Mandelbrot distributions.)

Arbitrage Conditions
on Warrant Prices

A warrant is a contract that permits one to
buy one share of a given common stock at
some stipulated exercise price X° (here as-
sumed to be unchangeable through time,
unlike certain real-life changing-terms con-
tracts) at any time during the warrant’s
remaining length of life of T time periods.
Thus, a warrant to buy Kelly, Douglas
stock at $4.75 per share until November,
1965, has X°® = $4.75 and (in March,
1965) has T =17/12 years. A perpetual
warrant to buy Allegheny Corporation at
$3.75 per share has X° =$3.75 and
T = 0.

When a warrant is about to expire and
its T =0, its value is only its actual con-
version value. If the stock now has X, =X°,
with the common selling at the exercise
price to anyone whether or not he has a
warrant, the warrant is of no value. If
Xi <X®, a fortiori it is worth nothing to
have the privilege of buying the stock at
more than current market price, and the
warrant is again worthless. Only if X, > X°
is the expiring warrant of any value, and—
brokerage charges being always ignored—
it is then worth the positive difference
X, —X°,

In short, arbitrage alonc gives the ra-
tional price of an expiring warrant with
T =0, as the following function of the
common price known to be X, =X,
F(X,T) = F(X,0), where

F(X,0) = Max[0,X — X°].

A warrant good for T, > 0 periods is worth
at least as much as one good only for
T. < T periods and generally is worth

18

more. Hence, arbitrage will ensure that
the rational price for a warrant with T,
time to go, denoted by F(X,T,), will
satisfy

F(X,T.) =F(X,T.) if T,=T.

A perpetual warrant is one for which
T = . But recall that outright ownership
of the common stock, aside from glving
the owner any dividends the stock declares,
is equivalent to having a perpetual warrant
to buy the stock (from himselfl) at a zero
exercise price. Hence, a perpetual warrant
cannot now sell for more than the current
price of the common stock Or, in general,
arbitrage requires that

(17) X=TF(X,0) =F(XT,) >
F(X,T:) = F(X,0) = Max[0,X-X°]

where
n=T=T.=(,

In all that follows we shall, by an ad-
missible choice of conventional units, be
able to assume that the excrcise price is
X® = L Thus, instead of working with the
price of one actual Kelly, Douglas warrant,
which gives the right to buy one share of
Kelly, Douglas common stock at $4.75, we
work with the standardized variable
X/X® = X/4.75—the number of shares
purchasable at $1, which is of course
1/4.75 actual shares; correspondingly, the
warrant price Y, we work with is not the
actual 'Y, but the standardized variable
Y./X?, which represents the price of a
warrant that enables the holder to buy
174.75 actual shares at the exercise price
of $1. We are able to do this by the fol-
lowing homogeneity property of competi-
tive arbitrage:

F(X.X°T
( ) =F ( X ,l;T),
X* X

a property that says no more than that two
shares always cost just twice one share.
Wherever we write F(X;T), we shall really
be meaning (18). (Note that Tri-Conti-
nental perpetual warrants involve the right
to buy 1.27 shares at $17.76 per share. In
caleulating X/X® = X/17.76, we use for X
the price of 1.27 shares, not of one share.)

Our conventions with respect to units
ought to be adopted by advisory services
dealing with warrants, to spare the reader

(18)
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the need to calculate X/X® and Y/Y®. All
this being understood, we can rewrite the
fundamental inequalities of arbitrage shown
in (17) as follows:

(19) X=F(X0) =F(XT)
= F(X,T.) =TF(X0)
— Max(0,X-1),00 =T, =T,=0.

In Figures 1a and 1b, the outer limits
are shown in heavy black: OAB is the
familiar Tunction Max(0,X-1). (In Me-
Kean’s :\pp(:ndix, this is written in the nota-
tion (X-1)") The 45° line OZ represents

the locus whose warrant price equals X,
the price of the common stock itself.

Axiom of Expected Warrant Gain
Mere arbitrage can take us no further than
(19). The rest must be experience—the
recorded facts of life. Figure la shows one
possible pattern of warrant pricing, The
expiring warrant, with T = 0, must be on
the locus given by OAD. If positive length
of life remains, T > 0, Figure 1a shows the
warrant always to be worth more than its
exercise price: thus, OCD lies above OAB
for all positive X; because OEF has four
times the length of life of OCD, its value
at X =1 is about twice as great—in_ac-
cordance with the rule-of-thumb VT ap-
sroximation; because T is assumed small,
and P(X/x;T) approximately symmetrical
around X/x = 1, the slope at C is about
1h—in accordance with the rule-of-thumb
approximation that if two warrants. differ
only in their exercise price X°, the owner
should pay $1/2 for each $1 reduction in
X°, this being justifiable by the reasoning
that there is only a half-chance that he will
end up exercising at all and benefitting by
the X° reduction. Note that all the curves
in the figures are convex (from below) and
all but the OAB and OZ limits are drawn to
be strictly convex (as would be the case
if P(u;1) were l()g-normal ar a distribution
with continuous probability density). Our
task is to demonstrate rigorously that the
functions shown in the figures are indeed
the only possible rational pricing patterns.
The pricing of a warrant becomes definite
once we know the probability distribution
of its common stock P(Xx;T) if we pin
down buyers’ reactions to the implied

RATIONAL THEORY
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probability  distribution for the warrant’s
price Y. (T,), in the form of the following
axiom:

Axiom of mean expectation. Whereas the com-
mon stock is priced so that its mean expected
pereentage growth rate per unit time is a non-
negative constant o, the warrant is priced so
that it, too, will have a constant mean  ex-
pected percentage growth rate per unit time
for as long as it pays to hold it, the value of
the constant heing at least as great as that for
the stock—or g == a. Mathematically

(20) E[Yue(To=T]Y(T)] = e Y(T0)

for all times T it pays to hold the warrant,
where

(21) pZa= log.,j‘XdP(X,x;l) =0,

The reader should be warned that the ex-
pected value for the warrant in (20) is
more complicated than the expected value
of the stock in (2). The latter holds for any
preseribed time period; but in (20), the
time period T must be one in which it pays
to have the warrant held rather than con-
verted, (In the appendix, McKean's cor-
responding expectation is given in 2.8 and
in 4.8.) Tt is precisely when the warrant has
yisen so high in price (above Cr in Figure
1b) that it can no longer carn a stipulated
positive excess B-a over the stock that it has
to be converted. Actually if B is stipulated
to cqual a, we arc in Figure la rather than
Figure 1b: there is never a need to convert
before the end of life, and hence all points
like C,,...Cy are at infinity; as we shall
see, the conventional linear integral equa-
tions cnable us casily to compute the re-
sulting functions in Figure la.

Warrants, unlike calls, are not protected
against the payment of dividends by the
common stock. Hence, for any stock that
pays a positive dividend, say at the in-
stantancous rate of § times its market value,
the warrant will have to have a 8 > «
if it is to represent as good a buy as the
stock itself. Taxes and peculiar subjective
reactions to the riskiness patterns of the
two sceurities aside, at the least B=a+8>a
However, cven if 8 =0 and there is no
dividend, buyers may fecl that the volatility
pattern of warrants  is such that owners
must be paid a greater mean return to hold
warrants than to hold stocks. I do not
pretend to give a theory from which one
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Y Warrant value

Common stock price
1

X
0 1 2

Figure la

Figure 1

These graphs show the general pattern of warrant
pricing as a function of the common stock price
(where units have heen standardized to make
the exercise price wnity), The longer the war-
rant’s life T, the higher is F(X,T). For fixed T,
F(X,T) is a convex function of X. In Figure Ia,
the perpetual warrant’s price is cqual to that of
the stock, with F(X,c0) falling on OZ; it never
pays to exercise such a warrant. In Figure 1D,

Y Warrant value

7

-9
F(X,0)
1(X,25)
F(X,4)
F(X,0)

1

7

/(" Common stock price
1

A
] 1 2

Figure 1b

X

Rational Warrant Pricing

the points C,, C,, Cs, and C, on AB are the
points at which it pays to convert a warrant
with T =1, 4, 25 and o years to run. Note
that ¥(X,e0) is much less than X in this case.
The pattern of Figure 1b will later be shown to
result from the hypothesis that a warrant must
have a mean yield g greater than the stock’s
mean yield e,

can deduce the relative values of B and «.
Here, I merely postulate that they are
constants (independent, incidentally, of T,
the life span of the warrant).

My w}mle theory rests on the axiomatic
hypotheses:
1. The stock price is a definite probability
distribution, P(X,x;T), with constant mean
expected growth per unit time « = 0,
2. The warrant’s price, derivable from the
stock pricc, must earn a constant mean ex-
pected growth per unit time, 8 = o = (),

Once these axioms, the numbers a,8, and
the form of P(X,x;T) are given, it becomes
a determinate mathematical problem to
work out the rational warrant price func-
tions Y,(T,) = F(X,T.) for all non-nega-
tive T,, including the perpetual warrant
F(X,,e0).

Some Intuitive Demonstrations
Before giving the mathematical solutions, I
shall indicate how one can deduce the

20

paradoxical result that a perpetual warrant
must have the same price as the common
stock if they both have to carn the same
mean yield. The reader may want to think
of the fair-game case where 8 = a = 0, a
case which has a disproportionate fascina-
tion for economists because they wrongly
think that if prices were known to be
biased toward rising in the future, that fact
would already be “discounted” and the
price. would alrecady have risen to the
point where « can be expected to be zero.
(What is forgotten here by Bachelier and
others—but not by Keynes, Houthakker,
Cootner®, and other exponents of “normal
backwardation”—is that time may involve
money, opportunity cost, and risk aversion. )

A warrant is said to involve “leverage” in
comparison with the common stock, and in
the real world where brokerage charges

“Refs. (121, [13), (14}, 1151, (16), See my cited
companion paper in this issue,
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y Warrant value y Warrant value

1 oo It
M
I’ M
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e /ﬁ/ Common ftock price ) g’ 4 Common ?tock price )

0 1 2 0 1 2
Figure 2 Warrant Pricing—The Perpetual Case

and imperfect capital rationing are in-  ronto Exchange, “would rise about 2.25

volved, leverage can make a difference. The  times as fast as the common stock on the
exact meaning of leverage is not always upside and decline no faster than the com-
clear, and writers use the term in two dis-  mon on the downside.” To one who be-
tinct senses. The usual sense is merely one lieves this, the warrant offers very good
of percentage volatility. Suppose a stock is  value or “leverage” in this second sense of
equally likely to go from $10 to $11 or to  the term. Indecd, by selling one common
$9. Suppose its warrant is equally likely to short and buying one warrant, onc could
go from $5 to $6 or to $4. Both are subject  presumably break even if the stock went
to a $1 swing in cither direction; but $lon  down in price and make money if the stock
$5 is twice the percentage swing of $1 on  rises—a sure-thing hedge that cannot lose
$10, as will be seen if equal dollars were if one believes the stated probability judg-
invested in cach security. In this sense, the  ment.

warrant would be said to have twice the Figure 2 shows for a hypothetical per-
leverage of the stock. Leverage in the petual warrant a convex corner at the
sense of mere enhanced percentage vari-  existing price E, with EF steeper for a

ability is a two-edged sword: as much as it rise than EG for a fall. Obviously, GEF
works for you on the upside, it works  could not persist if the warrant's 8 gain
against you on the downside. It is perfectly  were to be no bigger than the stock’s a gain.
compatible with « = g = 0. (However, it Similarly, the strongly convex NRM could
there were a two-thirds chance of each ot persist with 8 = «. What pattern for a
security’s going up $1 and a one-third  perpetual warrant could persist? Only a
chance of its going down $1, the warrant’s straight-line _pattern, since for any con-
8 would be definitely greater than stock’s o, vexity at all the mean of points along a
since a mean expected return of +331/3¢ curve must lie above the curve itself.

on $5 is twice that of +331/3¢ on $10; What straight line can be fitted in be-
and this impinges on the second sense of  tween OZ and OAB of Figure 1? Obviously,
leverage.) only the line OZ itself—proving that the

The second sense of the term leverage is  only rational price for a perpetual warrant
merely enhanced expected yield from the  must be that of the common stock itself
warrant in comparison with the common when « = B. (Any straight line not parallel
stock. Here is an example from the RHM.  to OZ and AB will interscet one or both of
Warrant and Stock Survey of February 25, them; any intermediate line parallel to 07/
1965: Newconex Holdings Warrant, To-  and AB will hit the zero axis at positive X
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and then develop a corer there. So OZ
alone remains as the formula for F(X,0) =
X)

The curve of F(X,T) for finite T can and
will be convex. But as time passes, one does
not move up and down the curve itself—
say from R to M if X rises or from R to N if
X falls. Instead, as time passes T dimin-
ishes, and one moves from R to a point he-
low M or N on the new F(X,T-t) curve;
and if the two convex curves have been
sketched correctly and placed in the proper
shift relationship to each other, it will be
found that the mean cxpectation of gain
from the warrant is precisely that from the
stock.

The moral of this is not that surveys are
wrong when they recommend a bargain,
It is rather that one recognizes correct or
rational pricing and the absence of bargains
when the warrants are priced in a certain
way relative to the common stock. It is only
as people act to take advantage of tran-
sient bargain opportunities that the bar-
gains disappear. When T speak of rational
or correct pricing, I imply no normative
approval of any particular pattern  but
merely describe that pattern which (if it
were to come into existence and were
known to prevail) would continue to re-
produce itself while fulfilling the postulated
mean cxpectations in the form of « in (2)
and B in (20). It would be a valuable em-
pirical exercise to measure the « for differ-
ent stocks at different times and deduce the
value of B8 that the warrants eamn ex post
and that can rationalize the obscrved
scatter of warrant and stock prices.

Intuition can carry us a bit further and
throw light on the case where 8> «. With
the warrant having to produce a hetter
gain than the common, the curve for a per-
petual warrant becomes strictly convex—as
in Figure 1b and in contrast to Figure la.
Furthermore, when the common price be-
comes very high compared to the exercise
price—ie., when X/1 is very large—the
conversion value of the warrant becomes
negligibly less than the common—ie.,
(X—=1)/X = 1. If in the period ahead the
warrant can rise at most gl more in price
than the common rises, the warrant’s gain
will approach indefinitely closc to the com-
mon’s «. But that contradicts the assump-
tion that B > a. So for X high enougF,
X > C, < w, it will never pay to hold

22

Copyright (c) 2003 ProQuest Information and Learning Company
Copyright (c) Massachusetts Institute of Technology, Sloan School of Management

the warrant in the expectation of getting
B> a; above this C. cut-off point, the
warrant must be converted, What has been
demonstrated here for perpetual warrants
holds « fortiori for finite” warrants with
finite T, Even sooner, at C, < C., it will
pay to convert since with the clock running
on and running out, there will be even
less advantage in holding the warrant for
an additional period when the stock and
it have become very large.

Linear Analysis where 8 = « = ¢
If the expected yiclds of common and war-
rant are to be the sume in (2) and (20),
there is never any a(lvantnge in converting
the warrant before the end of its life. That
is
(22) F(XT) > F(X,0) = Max(0,X-1),
T>0, B=a=0.

Equation (20), postulating that the war-
rant have an expected gain per unit time
of B, can thercfore be written, for all times
(23) E[Y,s(T-S) F(X,sT-S)

Y. (1) F(X,,T)]

= ¢"F(X,T) = f* F(X,T-S)dP(X,X,;S)

or

(24) F(x,T)

Il

1l

= e[ F(X,T-S)dP(X,x;S)

= e 2 F(X,0)dP(X,x;T)

= e [* (X-1)dP(X,x;T).
This last integral cquation provides, by a
quadrature, the solution of our problem.

From the fact that P(X,x;0) = 1,X > x and
= (), X < x, it is evident that

lim F(x,T) = F(x,0) = Max(0,x-1).
T-0

We can now prove that

(25) limF(x,T) =x=TF(x,00), f=a>0,
T

Substitute F(x,00),= F(x) into both sides
of (24) to get a self-determining integral
equation for I'(x),

(26) F(x) = ™[> F(X)dP(Xx;8).

The substitution F(x) = x does satisfy

SAMUELSON
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(26), since by (2)
x=c"f’ XdP(X,x;S)
(27)

= o Me®y = e

B=a
Any kx would also satisfy (26), but only
for k = 1 do we satisfy
x =T (x) = ke = Max(0,x-1).
To prove that the stationary solution of

(26) docs in fact fulfill the limit of (25),
rewrite (24)

F(x,T) = ™7 (X-1) dP(X,x;1)

X=X,

= o[+ (X-1)dP(X5T) +
IR (1-X)dP(X,x;T)

e

— e-ﬁ'l‘cu’l'

x—e™
+ e¢*70,(x,T)0.(x,T),
where |0 = L.
Obviously, if B = « > 0, F(x,») = x + 0,

as was to be pr()vcd. Fora =10

lim 0.(x,T) =

(ST

I dP(X,x;») = 1, since P(0+4,x;0) =0
(29)

lim 0.(x,T) =

tow

S (1x)dP (Xx;0)

= 1)
j(‘_dP(X,x;w)

since P(04,x; ») =0

Hence, for a=0=4, F(x,0)=x—141=x,
as reqquired,

Now that (24) gives the explicit solution
in the case « =B, we can put in for
P(X,x;T) any specialization, such as

P(X,x;T) = P(X/x;T) log-normal with
(30)

P(x;T) = N(l()g.\';yl,q\/z-) where

1
N(y;0,1) =N(y) =—/[ ez du
y y V&ﬂin

RATIONAL THEORY

or
X
Pl.ob{___ — eu }:___ e—h(
X

Prob[5 =0 b1 —e™
| x

(31)

a—b=a=g8 ab>0
For this last case, (24) calculates out to
(32)  F(xT) = Max(0,x —e™).

Note that the \/:fﬁ law does not hold truc
here for small T, but rather, at x = 1

(33) F(x,T) = F(1,T) =1—¢" =
1 -1 + aT + remainder {1%) = aT.

Henee, a warrant for twice the duration of
a short-lived warrant should be worth about
twice as much when (31) holds—even
though the ratios X.+/ X, are strictly inde-
pendent,

Valuation of End-of-Period Warrants
The exact solution of (24) holds only for
the case 8= a==0. It will be shown that
new formulas must handle the case of
B> a. However, the simple integral (24)
does give a solution under all cases to the
simpler case of a warrant that can be ex-
ercised only at the end of the period T.
We might call this a “European warrant”
by analogy with the “Europcan call,”
which, unlike the American call that is
exercisable at any time from now to T, is
exercisable only at a specified terminal date,

Obviously, the additional American op-
tion of carly conversion can do the owner
no harm, and it may help him. Denote the
rational price of a European warrant by
f(x,T), in contrast to F(x,T) of the Ameri-
can type warrant. Then

(34)  [(xT) =F(xT), 0=T

and our axiom of expected gain (20) is now
applicable in the form that gives the last
version of (24), namely

(35)
f(x,T) = Max(0,X-1)dP (X,x;T)
=e”"f? (X-1)dP(Xx;T), f=a=0.
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Since this is the same formula as held in
(24) for F(x,T) when 8 = a, we note that
in such a case the American warrant’s carly
conversion options are actually of no market
value; or

(36) f(x,T)=F(x,T) if 8=a.
When 8 > «, (35) still holds. But now
(37) f(x,T) < F(x,T)

for all or some positive (x,T). In the log-
normal case, the strong incquality must
always hold.

There seems to be a misapprehension
concerning  this inequality. Thus some
people argue that the owner of a European
call or warrant can in effect exercise it
early by selling the stock short, thereby
putting himself in the position of the owner
of an American warrant. If this view were
valid there would be no penalty to be sub-
tracted from F(x,T) to get true f(x,T).
Such a vew is simply wrong—as wrong as
the naive view that giving your broker
a stop-loss order gives you the same pro-
tection as buying a put. (The fallacy here
has naught to do with the realistic fact that
in a bad market break your broker will not
be able to execute your stop-loss order at
the stipulated price; waive that point. Sup-
pose I'buy a stock at $100 and protect it by
buying (say for $10) a six-month put on
it at exercise price of $100. You buy the
stock and merely give your broker astop-
loss sell order at just below $100. If the
stock drops below $100 at some inter-
mediate time during the next six months,
you are sold out without loss; but you do as
well as I do only if the stock never sub-
sequently rises to above $100; and the $10
cost of the put is precisely the market
value of my opportunity to make a differ-
ential profit over you in"case the stock does
end up at more than $100, after at least once
dipping below $100.) By the vector cal-
culus that Kruizenga and'T worked out for
various options, after one sells a stock short
and still holds a European call or warrant
on it, he is not for the remainder of the
time T in the position of a man who has
sold out his American warrant; instead he
is in the nct position of holding a put on
the stock. (If (1,0) and (0,1) represent
holding a call and put respectively, the
owner of an American warrant goes through
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the cycle (+1,0) and—in midstream—
(=1,0), ending up with (0,0). The holder
of the European warrant goes through the
eycle  (4+1,0) aad—in  midstream—
(—1,+1), leaving him for the remainder of
the period with (0,+1).)

To see that (37) does hold when 8> «,
recall that F(x,T) cannot decrease with T.
But applying to (35) the version of (24)
given in (28), we can see that a long-lived
European warrant does ultimately approach
zero in value as T - o, Thus, by (28) ap-
plied to f(x,T),

(38)
£(xT) = e[ (X-1)dP(X,x;T)

— c»ﬁ'l'ea'l'x — c-ﬂ'l‘ + c—ﬂ'l‘ 0|0:‘
o] < 1
lim f(x,T) = f(x,0) = f(x) =

Tors,
P x=0,8>a=0.

General Formula for 8 > a =0

The last section’s demonstration that
f(x,T) <F(x,T) when B>« provides a
rigorous proof that the lincar integral cqua-
tion of (24) cannot apply to the proper
F(x,T) for this case. Hence B > « docs
imply that a warrant cannot possibly be
worth holding at very high prices. Le., the
inequality

(39) F(x,T) =x—1, x=1

must for sufficiently high x become the
eqquality

(40) F(x,T) =x—1,
x> C,(Ti8a) < 0, 8> a

where 8C,/0T =0, 0C,/9a=0), aC,/ a8=0.,

(McKean’s appendix also proves this fact,
in 2.8 and 4.7.) ;

In place of the integral cquation (24),
we have the following basic inequality to
define F(x,T) where 8> a:

(41) x=F(x,T) = Max[0, x-1,

e F(X,T-S)dP(X,x;S) ]
McKean's appendix terms any solution of
this relation an “excessive function,” and
he secks as the solution to the problem the

minimum function that belongs to this class,
Rather than arbitrarily postulate that it is
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the minimum function which constitutes the
desired solution, I deduce from my axiom
of expected gain (20) the only solution
which satisfies it and which satisfics the
basic inequality. It follows as a provable
theorem that this does indeed give the
minimum of the excessive functions. That
is, any excessive function which is not the
minimum will fail to earn 8 per unit time
whenever it is being held.

How shall we find the simultancous solu-
tion to (20) and (41)? I begin from the
intuitive consideration that splitting up con-
tinuous time into small enough finite inter-
vals will approach (from below) the cor-
rect solution for the continuous case, If a
warrant can be converted only every hour,
its value will be a bit less than one that can
be converted at any time—less because an
extra privilege is presumably worth some-
thing, only a little less because not much of
a price change is to be expected in a time
period so short as an hour. The approxima-
tion will be even better if we split time up
into discrete minutes and still better if we
use scconds. In the limit, we get the exact
solution.

Let AT =h and define recursively in
(41) for fixed h and integral n

(42)
Fan(x;h) =
Max[ (0,x-Le™ {2 Fo (X;h)dP (X,x;h) ]

Fo(x;h) = Max(0,x-1).
Then
(43) lix‘n

1
h==~-0
n

F.(x;h) = F{x,T),

the desired exact solution to our problem as
formulated by (20) and (41). In principle,
by enough integrations, the degree of ap-
proximation can be made as close as we
like.

The general propertics of the solution
can also be established by this procedure.
Thus, if P(X,x;1) = P(X/x;1) is a multi-
plicative process—or even if some weaker
conditions are put on the way that P
shrinks with an increase in x—we begin
with a convex function Fo(x;h) and end at
cach stage with a convex expectation func-
tion. Hence, by induction F(x,T) and IF(x)
= F(x,00) must be convex. (F(x,T) will be
strictly. convex if P(X/x;1) is log-normal

RATIONAL THEORY
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or similarly smooth.) Where the slope
aF,(x;h)ax exists it can be shown induc-
tively that its value must lie in the closed
interval [0,1], a property which must hold
for F(x,T). At the critical conversion point
Cr, where Cr— 1 = F(Cy,T), one expects
the slopes of the two equal branches to be
equal,

It will be instructive to work through an
example in which time itself is divided into
small, discrete intervals t = 0,1,2,...,
cte. And suppose that P(X;x;1) corre-
sponds to a simple, multiplicative random
walk of martingale type, where

Xhl
Prob{——X =A> l} =p>0,

t

Xul
Prob ~ = Vir=1—p=q>0.

t
The gain per unit time is now given by

l1—p

where A = ——.
p

It will help to keep some simple numbers

in mind: eg. p = 1/3, ¢ = 2/3, A = 2,

making « = 0 and the [X.] sequence a

“fair game” or martingale, with zero net

expected yield.

If B is also set equal to zero, so that it
never pays to excrcise the warrant, (41)
reduces to the simple form (85), and we
are left with the familiar partial-difference
equation of the classical random walk (but
in terms of log, X, not X, itself). Speci-
fically, logs X./X, will take on only integral
values for t > 0; if later we make A nearer
and nearer to 1, the fineness of the grid of
integral values will increase; and it will
cause little loss of generality to suppose
that initially X, = A, where ( is a positive
or negative integer. This being assured, a
two-way F(X,m) = F(\"m) can always
be written as a two-way scquence Fom,
where m denotes non-negative integers and
n integers that can be positive, negative,
or zero, Corresponding to (35), we now
have:

Fo = Max(0,\" — 1)

Fnl = PFuu,o + q Fu-l.m P + q= 1

C=prtqt=1,

Fnz = Fn = pFnol + an-l-
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The last of these is an ordinary second-
order difference equation with constant
coeflicients, whose characteristic poly-
nomial is seen to be
pr'—o+ (IL—p) =ple—1) (0 ~0a.),
I-p
P
Write the general solution for F, as

Fo=o(1)" + con

where o, = =A>1.

Since F, » 0 as n » — o, we must have
¢, = 0. Since

Max(0, X — 1) = Max(0, A" — 1)
ZF(X) =" =" = X

we must have
=1, Fo=\, F(X) =X

verifying the general derivation of (25).

Now drop the assumption that « = 0,
but still keep 8 = a. The above partial-
difference equations are unchanged except
that now (p,q) are replaced by (Bp, Bq)
where

B'=c"=prh+q'> 1.

Again it can be shown that o, = X\ is a
root of the characteristic polynomial, and
that only if (c,c.) = (0,1) can the
boundary condition be satisfied. Again we
confirm (35)’s F(X) = X solution for a =

Now let B = ¢ > e* = p\ +q\" =
d(\) =1,

For m = %, there will exist critical in-
tegral constants n.., equal (except for the
coarseness of the integral grid) to log.C..,
above which warrant conversion is manda-
tory. The partial-difference cquations de-
rivable from (41) now become

Fown=AN=1 n=n,>0
Fom = BpFuma + BqFui e
=N —Ln<n, (m=12...)
Fy. = F, = BpF.., + BqF,.,
=\,

n<n,
n=n,,

These relations define the sequence (n,)
recursively—e.g., n, is the lowest integer
for which

Mt —1=Bp(A\"x —1) + Bq(\"\"—1).
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With n, known, we have initial conditions
to the right to determine F,, for n = n,
The difference equation for I, ,, which can
be written symbolically in terms of the
operators E and E defined by EF,.. =
Frtm E'Fu = Foyw as o(E)F,, = 0
then determines F,.. With this known we
determine n. as the smallest integer for
which

M2 — 12 Bo(E)F,.:

then determine F, . by ®(E)F,. = 0, ctc.
The constant n, can be determined along
with IV, by the following relations

‘l’(E)Fu =0; F, = Cl‘T)" + e,

where the characteristic polynomial can he
shown to be

o®(s) —o =Bplo— ) (0 — a.),
where

0<o, <1I<A <o =N, y>1,

HF.-»>0an-> —~ %, ¢ =0 to deter-
mine ¢ and n, = a for short, we set

Cz)\‘“‘)\v = \N\— 1)
(NM=DN =M= L, (N = M\ ==y — |

CAt =N — 1, or

a = log(y — 1) — log. (A =),
= (N — 1™,

where of course y is a tunction of « and 8
through its dependence on the coefficients
Bp and A, Fu = A" means in terms of X,
the antilog of n, that F(X) = X, y = |
as our first general answer,

We can always convert one-period par-
tial difference equations  into N-period
equations, When we do this (pyq) are re-
placed by (p* 2p, ), . . . and by (p%,
sCip™q, . vy qY) where Gy are the fa-
miliar binomial cocfficients. By the usual
central limit theorem, these approach the
normal distribution. But since these co-
efficients apply to the F.., which refer to
the logarithms of X, we wrive at the log-
normal distribution, Hence, if we can
prove that the partial-difference equation,
not merely for ®(E)F, = (BpE + BqE)¥,
but for any general set of probabilitics

+r T

‘I)(E)Fn =B 3 P)E’F" = Fn, % P = 1,
X -k
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satisfies the F(X) = ¢X' power law, we
have strong heuristic evidence that  this
will be the exact case for the log-normal
case—as  McKean  has rigorously proved
in the Appendix. The characteristic poly-
nomial of this last becomes

— 1 4ot (o) = (o0 — @) (o =) o, (o),
where, as before

0<a<AEN, y=1

and @.(o) s a p()lyn()miul with no roots
greater than 1 in absolute value. Hence, in
the gcncrall solution

I, = Yooy = ¢A' 4 Remainder,

all the ¢s except ¢ must vamish if T_, » 0.
The value of ¢ and the critical conversion
point n, is determined just as in the simple
(p»q) case. If the grid is very fine because
Ao LA = ¢, = y/(y — 1) to an in-
creasingly good approximation.

As a preview to McKean's exact result
for thie continuous-time case, 1 shall sketch
the vsual Bachelier-Einstein derivation of
the partial differential equations of proba-
hility diffusion—of so-cuﬁcd FFokker-Planck
type—by applying a limit process to the
discrete “partial’ difference equations. From
now on consider n = log x as if it were a
continious rather than integral variable.
Bachelier wrote in 1900

1

Pa = Tpnu. o = Paot, oy

2
or
1 1

Pr s = '2_ Puesn. v + 5 Pran, ¢

At Paciar — Pa.t

(an)? At
1 ( wedn, t T e
L ez
2 (An)*
_l_ (Pu-m.l'—Pml)
2 (An)?

Now if at = 0, with at/(an)* = 2¢°, we
get the Fourier parabolic equation
y ap(n;t) _ op(n,t)
at o’

Bachelier assumed a fair game with prob-
abilities of wnit steps in cither direction

RATIONAL THEORY

cqual to 172, If we replace (172, 1/2) by
(p,q) so that the random walk has a
Diassed drift of « as its expected instantanc-
ous rate of growth, we find p(n — at,t) sat-
isfying the above equation and hence the
requisite distribution r(n, t) = p(n — at,
t) satisfies

or(nt) Lor(nyt) ar{n,t)
— = + Ca
a’ at on

Bachelier and Einstein  were  talking
about the diffusion of probabilities. But we
have seen that the warrant prices o, nOW
written as F(e"t) = (n,t), satisfy similar
partial-difference equations, the only dif-
ference being i) that the coefficients add
up to less than 1 when B > o and ii) the
houndary conditions for e become rather
complicated. Just as we had a simple sec-
ond-order  (partial)  difference  equation
E¢(E)F,, = EF,., we derive in the limit
—as McKean shows in 3, and 5, drawing
on the work of E. B. Dynkin—a simple
(partial) second-order differential equation

for w(n,t), which in terms of log.x = n
hecomes,

o P (nt) 5 ar(nt)  av(nt)

9 o’ n ot

2
a

Br(nt) =0, § =a— 3
w(n,0) = Max(0,e"— 1)
w(ent) = et —1

It is understood that the equation holds
for (n,t) to the left of n = e and that
W(—w,t) = 0. However, it is a difficult
task to compute the ¢, function, even using
the high contact property (e t)/ox = 1.

The perpetual warrant is much simpler,
since then w(n,%z) = w(n) with a¥(n,
w) /ot = 0, giving the ordinary differential
equation

(—rz;‘l'”(n) + 8% (n) — B¥(n) =0,
n<ec,

W(—w) =0, ¥()=c—1,
v (c,) = ¢
The general solution can be written as a

sum of two exponentials, in terms of the
roots of the characteristic p()lynomial
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2

a a 8 _(7
5Pt p—B=7

(P—{’l)([’_[):), PI:’)’> l>p;,

If the boundary conditions are to be reul-
ized, the p. root must be suppressed and
we are left with

wy

¥(n) = (c.—1) :—-, or
P = (-0 ()
Ca

Y=

c,— 1

Intuitive Proofs from Arbitrage
Equation (18), which related the rational
price of a warrant with any excrcise price
X° to the formula for a warrant with X°
= 1, can be used directly to deduce re-
strictions on the way F(x,T;X®) varics
with X°. Because F(x,T) has been shown
to be convex with numerical slope on the
closed interval [0,1], (18) can deduce that
the numerical slope of F(x,T;X°) with re-
spect to X° must be on the closed interval
[~1,0]—ie.,

1=
F(x,T;X° + aX®) = F(x,T;X°) 20, o
AN
oF (x,T;X°)

axe

where the last partial derivatives, if they
do not exist at certain corners, can be inter-
preted as cither left-hand or right-hand
derivatives.

One proves (44) directly by differentiat-
ing (18) with respect to X°, to get
OF (x,T;X°)

X°

i) X
2 Ler(Lr))-
0X° X
X
aF (-—,—o—,T)
nl x " x X
FN—T)————mm———
X° X®  0(x/X?)

That the right-hand expression in (45)
is non-positive follows directly from the

(45)
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definition of convexity of F(x,T) when
F(0,T) = 0. That it is not algebraically
less than —1 follows from the fact that
F(x,T) = Max(0,x —1).

Intuitive economic arguments provide
an alternative demonstration that

aF (x,T;X®)
(46) —-]1E—————=0
oX°

An increase in the exercise price X°
must, if anything, lower the value of the
warrant since it then entails a higher future
payment. But a fall of $1 in X°* can never
be worth more than $1, since stapling a $1
bill to a warrant with X°® exercise price is
a possible way of making it the full equiva-
lent of a warrant exercisable at X° — $1.
Hencee, we have cstablished (46).

The condition for high contact at a con-
version point Cy, namely 9F (x,T)/dx - 1
as x = Cy, seems intuitively related to re-
alization of left-hand cquaﬁty in (46) as
x = C./X°, which in turn scems intuitively
related to the probability that, when x is
already near Cr, x will be reaching C, in
a sufficiently short future time. For the log-
normal Brownian motion of (30) and the
special case of (31), these conditions for
high contact will be realized. But for any
solution  of the  Chapman-Kolmogorov
cquation (4) of log-Poisson type, like that
discussed by McKean and involving jumps,
high contact will definitely fail. Tf we rule
out combinations of Poisson jumps, only
(30) and (31) and combinations of them
like that shown in (16) would seem to be
relevant, For them high contact is indeed
ensured. And for both of these types an
exact power-of-x solution for the perpetual
warrant has been shown by McKean to
hold.

Final Exact Formula for Perpetual

Warrant in Log-Normal Case

McKean has proved in (3.0) the following
exact smooth formula for F(x,») = F(x),
for the log-normal case

1
(47) F(x) = Ly =

FTES R
C

SAMUELSON

1



X 025 50 .75 L0 125 L50 L75 20 25 30 35 40 45 5.0

-}-x' 0 .016 .062 .141 .250 .391 562 .766 1.0° 15° 20° 25° 3.0° 35° 4.0°

4

2(}-)8/’ 0 .048 .136 .250 .385 536 .707 891 1.088 1521 20° 25° 3.0° 35° 4.0°
3

3(—’-‘-)”’ 0 074 .188 .322 472 .636 811 .996 1.190 1.603 2.044 2511 3.0° 35° 4.0°
4

4(_".)5" 0 094 295 373 535 .707 .888 1078 1572 1682 2112 2561 3.026 3506 4.0°
5

Figure 3 Rational Price for Perpetual Warrant in Log-Normal Model

[Explanation: x = X/X°, the common stock price -+ exereise price. y = Y/Y®, warrant price -+
exercise price is given byy = (¢ — 1)(x/c)* where vy = ¢/{c — 1); value of ¥ depends on
ofo* and f/o* as given in Equation (+18).]

o Warrant at conversion value,X — 1.

¢ [ rewrite McKean’s formula for y (in the
-> 1. Appendix) as

—x—1 xZc¢y=
X X=¢ v 1

This has the nice property of high contact, — (4g) 4 = (_i_ _ﬁ) +

with I"(¢) == 1 from either direction. Ex- 2

amples of (47) for different values of y S

would be ' \/[_l__*__a_] +2[_ﬂ;__t;].
X 2 - o

1/3
F =3< ) s =4/8, ¢ =4
(x) 1 Y ¢

T TTTTI T TTTTT T TTTT
Warrant Price/Exercise Price

, 33
F(x)=2(%) . y=8/2, c=3

1
P =%, y=2e=2

T TTITIT

1111

The last of these formulas has heen pro- 10
posed, in different notation, on a purely ’
ad hoc empirical basis by Guigere."

I append a bricf table of values (Fig-
ure 3) of F(x) for what would seem to be v=5/4
empirically relevant values of y.° Figure 4 v=4/3
plots as straight lines on double-log paper v=3/2
I(x) for various values of v. —9

To relate y to a, B8, and the dispersion -
parameter o* in the log-normal distribution,

T T TTTTTT
L1111l

Conversion
locus

T TTTTTT
BN

1Ref, [171, The notation there, of course, needs to be 1 1| L LLLiu 1 i
X Y | |

related to my notation involving — and —, as in 1.0
° °

) Common Stock Price/Exercise Price
Figure 3.
°Acknowledgment is made to F. Skilmore for these Flglll:c 4 Rational Price for Perpctual War-
computations. rant in Log-Normal Model
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That y is a function of (a/o®, B/0*) follows
from the invariance of the problem under
transformations of the unit used to measure
time. Similar ratios of parameters oceur in
the log-Poisson process and the multiplica-
tive-translation-with-absorption  process of
(15).

It is instructive to hold (a,8) fixed in
(48), and examine how y varics with the
dispersion parameter o* of the log-normal
process for the stock. When o° > w, the
difference (B — a)/e* > 0 and y - 1, the
case where the warrant never gets prema-
turely converted. Such a large value for the
dispersion parameter o would create a
very large o if the drift of log X, were
not strongly negative. Any such negative
drift implies that it is “almost certain” that
the holder of the stock will be “eventu-
ally” (“almost completely”) ruined—even
though the stock does have a positive mean
capital gain. Note the tricky statement in-
volving a triple limit, as in the carlier
theorem on (virtually) certain (relative)
ruin,

We'll see in (50) that y = \/B/; when
o® = 2a and there is no drift at all to log X,
and hence to X.. In this knife-edge case of
Osborne, where the geometric mean of
future Xi.v just equals X,, the probability
of a future capital loss (or gain) is exactly
one half. At the other limit, where the dis-
persion ¢ > 0, we put («/d®, B/a*) =
(»,) in (48) and find y = B/a. This
can be verified by substituting into y =
(¢ — 1)(X/c)* the now-certain path X(t)
= X and deducing Y(t) = Y.e" =
Yo', with y = B/a.

To estimate y empirically, one might
regress log warrant price against log com-
mon price, y being the regression coeffi-
cient, Then o might be estimated statically
by calculating the mean percentage gain
per unit time of the common, or by com-
puting E[X.,,]/X, = ¢ Then B will be
determined by the formula (48) for y once
onc has an estimate of ¢°. Since o is the
standard deviation of log(X,../X.), it can
be estimated from the sample variance of
this last variate. The consistency of the
model with the facts could then be
checked by calculating B sepavately as the
mean value of the warrant’s gain, or by

E[Y.:]/Y: = e
where T is always less than the time after t
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when it pays to convert the warrant. A fur-
ther check on the log-iormality model
comes from the fact that, when the “instan-
tancous variance per unit of time” of X, is
o, the instantancous variance for unit time
of Y should work out to be y'o*, greater
than * by the factor ¢ > 1.

[ am not presenting any empirical re-
sults here. But I shall draw upon some find-
ings of others by way of illustrating the
theory. (Incidentally, they suggest remark-
ably high B/«, giving the warrants a sus-
piciously favorable return.)

Osborne® finds some empirical warrant
for his theoretically dubious axiom that
log X. takes an unbiased random walk,
with neither upward nor downward drift.
If ut represents the net drift of log Xi, we
have

d* 0 @ 1
Frem ™ T

(49)

Substituting these values into (48) gives
1

(50) y= \/E, when ﬁ = —,
o 2

o

Oshorne and  many investigators  report
average capital gains on a stock of three to
five per cent per year. So set « = 04
Finally Giguere in the cited paper™ infers
y = 2 from empirical scatters of perpetual
warrant prices against their common stock
prices. (My casual econometric measure-
ments suggest y = 2 is much too high:
these days one can rarely buy a long-lived
warrant for only one-fourth of the common
when the common is selling near its exer-
cise price. But accept y = 2 for the sake
of the demonstration.) Combining p == 0,
« = 04, y = 2, we get for the mean return
per year for holding the warrant no less
than 16 per centl—ic., B =y" a == 4(.04)
=16,

This does seem to be a handsome re-
turn, and one would expeet it to be whit-
tled away over time—unless .people are
exceptionally averse to extra risk. The high
B8 return would e whittled away as people
bid up the prices of perpetual warrants
until they approached the value of the
common stock itself—at which point 8 - :

1Ref. (31, p. 108.
1BRef, (171,
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oy = 1, and ¢ = . There is no other
way. Yet this does not seem to happen.
Why not? One obvious explanation is that
whenever a stock pays a regular dividend
of § per period, 8 will, taxes aside, natu-
rally come to exceed « by at least that
much, But there are stocks that pay no
dividend which still sell much above their
perpetual warrants. Perhaps - departure
{from our assumption of a stationary time
series, in the form of a supposition that
there will later be a regular dividend, can
help explain away the paradox, Coming
events do cast their shadow before them.

I should like now to sketch a theory to
cxpluin w]ly B — «a cannot become  too
large. 1f B > « so that y > 1, hedging will
stand to yield a sure-thing positive net
capital  gain (commission and  interest
charges on capital aside!). This follows
from the concept of leverage as curvature
in Figure 2. Let the stock be initially at
X, with the warrant at F(X,) = Y. Then
buying $1 long of the warrant and selling
$1 short of the common gives the new
hedged variate 2 = Y/Y, — N/X.. Whether
X goes up or down, 7 is sure to end up
greater than 1, with a positive gain, In-
deed, its expected gain per unit time i
B — « But there will be a variance per
unit time around this mean value that
works out to (y — 1)%* This variance will
be quite small when y is near to 1, but
with y == 1 it is likely that the difference
B — « will also be small.

In the example worked out carlier from
the data of Osborne and Giguere, a hedger
would have the same variance as would a
huyer of the common stock; but instead of
carning 4 per cent a year, he would earn
12 per cent a year, And, commissions aside,
he would have no risk of a positive loss.
This would seem like almost too much of
a good thing. Under the stock exchange
rules, T believe he would have to put up
about the same amount of money as mar-
gin to engage in the hedged transaction as
to buy a dollar’s worth of the warrant or
stock ‘outright; he would not need margin
money for cach side of the hedged trans-
action. So he would have to reckon in the
opportunity  cost of the safe interest rate
per unit time of money itself, p. Presum-
ably though, the buyer of the common
stock has already felt that its « == .04 ve-
turm was adjustc'd to compensate for that p.

RATIONAL THEORY

(1f the stock pays a percentage dividend,
5, the excess 8 — « includes compensation
for 8, p and for extra riskiness. Actually, if
the excess of B over « comes only from the
fact of the dividend 8, there is no advan-
tage to be gained from the hedge; this is
because the man who sells the common
short must make good the dividend, and
that will reduce the appavent profit of the
hedge to zero. Hence in what follows, 1
deal only with the excess of 8 over « that
is unrelated to dividends, and 1 ignore all
dividends.)

If hedging arbitrage alone is counted on
to keep B — « small, under present margin
requirements we should expect 8 — a = p
il riskiness were not a consideration. Since
there is some aversion to dispersion around
the mean gain from the hedge, we should
not expeet from hedging arbitrage alone
that B — a < p. On the other hand, if
people are risk averters and y < 2, as
seems realistic, it is hard to see how one
could get B — « > a, since people would
shift from holding X outright to holding a
hedged position 7 if the latter had the
greater return, less variance, and no chance
of loss. One could, in principle, leam from
stock exchange records how much hedging
is in fact being done, since a rational
hedger will minimize margins by dealing
with one firm on both sides of his hedge.
It is my imprcssion that not much warrant
hedging is in fact done, although in con-
vertible bonds there does seem to be a
greater volume of hedging. Still if y and
B — « threatened to become too large,
potential  hedgers would become actual
hedgers. Tence, the limits derived above
do have some relevance, particularly

(51) f—a<ua

Conclusion

The methods outlined here can be ex-
tended by the reader to cases of calls and
puts, where the dividend receives speciil
treatment different from the case of war-
rants, and to the case of convertible honds.
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Appendix: A Free Boundary
Problem for the Heat Equation
Arising from a Problem of
Mathematical Economics®

Henry P. McKean, Jr., M.LT.

1 Introduction
Paul A. Samuelson has developed in the preced-

°The partial support of the Office of Naval Research
and of the National Science Foundation, NSF G-19684,
is gratefully acknowledged.
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ing paper a model of warrant pricing from the
economic standpoint; the purpose of the present
article is to add some mathematical comple-
ments.

Samuelson supposes that the motion of the
price x of the common stock is a (multiplica-
tive) differential process; this means that for cach
s = 0, the (scaled) future motion x(t 4 s)/
x(s) : t = 0 is independent of the past x(t) :
t = s and has the same statistics as x(t)/x(0) :
t = 0. Define Py(B) [Ei(f)] to be the chance
of the event B [expectation of the function f]
for prices starting at x(0) = 1 and impose the

MCKEAN
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condition Ei(x) < 0. Ei(x) = ¢ follows and
it is assumed that « = 0.

Define h = h(t, §)° to he the “correct”
price of a warrant to puichase the common
stock at unit price, as a function of the time of
surchase t == 0 and of the current price E= 0,
subject to the additional condition that the war-
rant :lpprcviutu at the rate g = a up to such
time as it hecomes unprofitable still to hold it.
The problem of computing h has the following
mathematical expression: find the smallest solu-
tion f = hof

f(t, &) = e PRt —s, Ex(s))]
(s =t,E=2=0)

that lies above (& — 1)* = the greater of & — 1
and 0; the simpler problem of finding the “cor-
rect” price h(e,.) of the perpetual warrant
can be expressed in the same Janguage as fol-
Jows: find the smallest solution [ = h of

f(g) = cMEH(ES(D)))] (£2=0,8=0)

that lies abote (& — 1)

‘The existence of h s proved and its simplest
propertics discussed in sections 2 and 4 below:
i B> @ h turns out to be an increasing conves
function of & up to a point £ .- e(t) > 1 [the
corner], to the right of which it coincides with
¢ — 1; cand hincrease with timeto ¢( %) < %
and b, &) <& Nh(=,.)is computed in see-
tion 3 for a (multiplicative) Brownian motion
of prices [ == (¢ —1)(8/c), e =/(y -1},
angl- also for a (multiplicative) Poisson process
of prices [h = a broken line]; and in section 53,
h is computed for t = = and a (multiplica-
tive) translation of prices with possible absorb-
tion at 0. A partial solution of the problem for
t < = and a (multiplicative) Brownian motion
of prices is deseribed in seetion 6: it leads to a
free boundary problem for the heat equation,
the free boundary being a solution of an unfor-
tunately intractible integral - equation due to
1) 1. Kolodner [4].

An unsolved problem is to find a nice condi-
tion on the prices that will make h(¢) == 1.
I-(c) is the left slope at the corner, h(e)y =1
is automatic. Samuclson has conjectured that
this will be the case if Q = Pix(t) =1,
t} 0] = 0 [the alternative is Q == 1], but 1
could not prove it. Another inviting unsolved
problem is to discuss the integral cquation for
the free boundary of section 6.

I must not end without thanking Professor
Samuelson for posing me this problem and for
several helpful conversations about it.

2 Perpetual Warrants
Consider a (multiplicative) differential process
with sample paths t = x(t) = x(t4+) =0,

oSamuclson’s notation for this is F(X,T).

APPENDIX

probabilities P.(B), and expectations Ei(f),
starting at x(0) = 1, ie., let P[x(0) = 1] =
1 and, conditional on x(t:) > 0, let x(t:)/x(t:)
be independent of x(s) s = b and identical
in law to x(t: — t;) for cach choice of t: =t
= (0. P.(B) and E.(f) denote probabilities and
expectations for the motion starting at x(0) =
a = 0; this motion is identical in law to [ax,
P]; esp, Puls(t) = 0, t = 0] = 1 and
P [x(t) < b} = Pix(t) < b/al fora, b > 0.
[x, P.] begins afresh at stopping times. A stop-
ping time is a non-negative function ¢ = o of
the sample path, such as t = 1 or the cxit time
¢ = inf(t : x > 1), such that for cach t =0
the event (¢ < t) depends upon x(s) 1s =t
alone. Beginning afresh means that if B., is the
field of cvents B such that B n (¢ < t) is
measurable over x(s) : s = t, then conditional
on the present a = x(t) and on the event t <
o, the future x(¢ 4 t) 1 t=0is independent
of the past Bu, and identical in law to [x, Pal:

P.{x(t + edb|Be] = Puix(t)edb] if t < o3

sce G. Hunt' for a complete explanation of
stopping times for (additive) differential proc-
esses. wannine: The reader is cautioned that
the italic letter ¢ [stopping time] must be care-
fully distinguished from the roman letter t [a
constant time]; italic x [stopping point x(¢)]
must likewise be distinguished from roman x
[sample path].

5,(x) = f(t) is a solution of f(t — s)f(s) =
f(t) (s =) and 0 < £ = 0, 50 F(x) == ¢"
for some —eo < o = %, Py = Lt= 0]=0
or 1 because Pi[x(s) = 1,s =t] = f(t) is a
solution of f(t — $)(s) = [(t) (s = 1) and
0=f =1, so that f = ¢ for some 0 = vy
= o and f(o) = 0 or 1 according as v > 0
ornot. Di[x = 1, t =0} = 0is assumed below.

A non-negative function [ 4: oo defined
on [0, @) is (B—) excessive if e ME[f(x)] 1
as t L 0; in this language the problem of the
perpetual warrant is to find the smallest exces-
sice function h = (§ — 1) incase oo > =
a == 0, It is constructed and its simplest proper-
ties derived in a series of brief articles,

1. Define b = (§ — 1)t and W = (bf\'})o
E.[W(x)] forn=1; then (8 — 1) =h"1
h=Easnt w.

rroor: h'(E) = W(E) = ts;q)() e B [h(x)]

e

OSUP prf) = SUP ftentE =
=g B = e "8 =§

if i == &, and the obvious induction completes
the proof.

_—

1See ref, (3
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2. his mcrcasmg, concex (and so continuous),
and its slope is =1.

proor: h"(g) = t“_lp ¢ E [h'(Ex)] in-

herits all the desired properties from h"'; now
use induction and let n ¢ co.

3. h is the smallest excessive function = (& —
1)t

rroor: ¢'E,[h(x)] = h is obvious from 1
and since heC[0, o) (2), an application «

t'ii‘}) P B [h(x)] =

.

Fatou’s lemma implies

E.[lim inf h(x)] = h, comp]eting the proof
that h is excessive. Also, h = (& — 1)*, and if
j is another such excessive function, then the ob-
vious induction supplies us with the underesti-
mate j =h"t h(nt o).

4. h = (§ — 1)* to the right of some point
1<c=cw.h> (5—1)"totheleft.

rroor: Givens = tanda, b > 0,

Pi[x(t) = ab] = Pi[x(s) =a, x(t)/
x(s) =Db] = Pilx(s) =ally[x(t —s) = D]

so that Pi[x(nt) = d"] = P,[x(t) = d]", and
either Pi[x = 1] = 1 (t= 0) violating Pi[x =
1L, t=0] = 0 (use E(x) = 1) or Ps[x(nt) =
d*} > 0forsomet>0,d > 1,and eachn =1,
But in the second case, h = ¢™E [(x(nt) —
1)*] > 0 for n ¢ e, and the statement follows
from 2,

S h=sifp=a=0

PROOF: & = h = ¢ ML [x — 1] = E(1 — )
tEastp o ifp= a>0,wlli]cifﬂ =a =0,
then E([(x — 1)*] = (§ — 1)*so that h =
tlTlm E.[(x—1)'] = E,[h(x)]. Because h is
convex (2), its 1-sided slope h'* is an increasing
function,

h(g) = h(1) 4 (& — l)l:'(l) +
l [h*(n) — h*(1)1dn,

and putting § = x and taking expectations (L)
on both sides, it follows that h* = h*(1) be-
tween 0 <a<landb> 1if 0 < Pi[x = a)
Pi[x = b] for some t > 0, But P,[x(nt) = d"]
> 0 forsome t > 0, d > 1, and cach n =1 as
in 4, and using the same method, it is also possi-
ble to make Pi[x(nt) = d"] > 0 for the same
t > 0, some (perhaps smaller) d > 1, and cach
n= | (use Ei(x) = 1). h* = h*(1) is imme-
diate and h = & follows from the bhounds & — 1
=h = E and the fact that h(04) = 0,
WARNING: B > « = 0 until the end of the next
section,
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6. Given a closed intercal 0 < a=t=b<
with exit time t = tw = inf(t:x <aorx>Db)
and exit place x = x(t), P.[t < o] = 1 and
j = jw = E,[e™h(x)] lies under h.

rroor adapted from E, B, Dynkin®: Pt <
o] = 1 since in the opposite case, 0 < p(§) =
Pla=x=Db,t=0] forsome a =E = b, and
putting pa = “’"1’ p(§), the bound p(E) =

E[plx(n)], a 4 x = b, t = n] = puPla =
x = b, t = n] decreases to pap(E) as n 4 o,
proving pa, = L But pu = ”i'l? Pi[a/E =x =
b/E, t = 0] = Pifa/b = x = b/a, t = 0], and
this cannot be 1 without violating the esti-

mate Pi[x(nt) = d'] > 0 of 4. Define Gf =
o s |
0

120Gh=u< »wify=
Gill + (B —
v o= h +

B, [ J: e“”v(x)dt] .

for non-negative f and

g :md Gy =
v)G,], so that if v = = g and
B — )y, then u = Gy =

—

Because of v=h + (g —v) ‘ cdte®*h =
o

0, it follows that

u= E,[ 1 e'”‘V(X)dt] =
i
E. [ ™ " ev[x(t 4 t)]dt J
and since x bq,ms afresh at the stopping time ¢
while ¢ itself is measurable over By,
u=E [¢Giv(x)] = E.[e*u(x)]

with ¥ = x(t). Now usc the fact that (v — g)
uthasyt .

7. j is excessive.
rroor: Because x begins afresh at time t = 0,
¢™E [j(x)] = E [e™°h(x*)] = j°

with 1° defined as the ne \t exit time from a =
§ == b after time t and x° = x(¢°), Using thc
notation and method of proof of 6,

I, [e?°u(x®)] ==
E,[_’:oc‘”'V(X)dt] = E,[J’ .(,""V( )dt]
E.[e™u(x)],

and since (y — g)ut has vy} w, it follows that
j°=j Butalsot® ltastl 0 and x(¢t4) =
x(t), so Fatou’s lemma implies

“See ref, [2].
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thinoi" = E [lim inf e?**h(x®)] =,

completing the proof.

8. ¢ < o and E.[e*h(x)] = h with t = min
(trx=c),x= x(t), and ¢*h = 0if t = oo,
in case Pt V0 asat Land b 1] = 1.

proor: Define for the moment £ = ta and ¥ =
x(a). Because x is differential and h > (§ —
1) near § = 1, it is possible to choose a <

1 < b so as to make ":":l E¢[et-'**1] so large

that ju = (& — 1)* But jo = h is excessive
while h is the smallest excessive function
=2 (E — 1), $0 ju = h for this choice of a <
1 < b, Given 2 overlapping closed intervals
an=t=Zhada =8 = bs with 0 < a =
m<a<h<b:=b< oand corresponding
functions j = b, it is to be proved that ju = h
also. Consider for the proof paths starting at
a = x(0) = E=h and define stopping times

t, = the exit time from aiby,

fs = 1, or the next exit time from azb according
as ty = ta Or not,

t, = t; or the next exit time from b according
as s = ta or not,

ete.

f =ty == efe. =h is constant (= t, = ta)
from some smallest n = m on, and putting <
= x(ta) (n = ), 8 simple induction justifics

h(Eg) = Ede?shix)] =
Efe?*=h(x,),n=m] +
Efeh(x,), n < m].

Asnt o, this tends to ju since Pm < w] =
1 while h(x) = b < w on (n < m). ju = h
follows at once. Now choose 0 < a < 1 <
b < ¢ so that ju = h. Repeating the first part
of the proof, it is clear that the function j asso-
ciated with a small neighborhood of b is iden-
tical to h, and using the second part, it follows
that ju = h for a little bigger b. Because a ean
be diminished for the same reason, it is clear
thatif 0 < b < ¢ (orif b = cincase ¢ < @ ),
then it is possible to find closed intervals 0 <
an == & = by < b increasing to 0 < £ < b with
jo = h, But for paths starting at 0 = x(0) =
€= bhand nt oo, the exit times fo from an =
€ == by, increase to the exit time £, = min(t : x
— 0 or x = b) while xa = x(t) tends to
x, = x(t,),° s0

i"( E ) — lim

nt
E[e?vh(x)] == Ecle?'<h(x.)]

he) = B

°G, Hunt (3],

APPENDIX

because of the bound

e#h(xn) =1():“'°°h(x,,) ifan=b

if xa <D,

and to complete the proof, it suffices to replace
t, by t = min(t: x = b) and to prove ¢ < c0.
As to t,, since h(0) = 0, h = E.[e*=h(x,),
x, = b] = E [e?h(x)] with x = x(¢) and
the convention ¢®'h = 0if ¢ = o, As to the
proof that ¢ < o, if ¢ = o, then h =
& [e®h(x)] with t. = inf(t : x > n) and
xa = x(t.). Because

g —1=h(E) = Efe?nx(t)] =
Ex[e"""/EE_,x( tn/l)]

for n > E 1 = Eife*x(t)] as follows on
putting n/& = 2 and letting n 1 0. Because
B> a Efe?x(t:)] < Ei[e'=x(t:)], and
adapting the proof of 6 to the (a—) excessive
function f = &, one finds Ejle*'=x(t:)] = E.
But this leads to a contradiction: 1 < Ey[e's
x(e:)] =1

9, ¢ < e and E [e*h(x)] = h with t =
min(t : x =c¢) and x = x(¢) in general.

proor: 8 covers the case Pi[tw 4 0 asa t 1 and

lim
b 1] = 1; otherwise, Py [ut Lt > 0i=1
bill

according to Kolmogorov's 01 law, so the par-
ticle moves by jumps with exponential holding
times between, Consider the modified motion
x® = ety with so small a positive e that g >
o = a 4 ¢ and let h° and ¢® be the ana-
logues of h and ¢ Because e™E, [h°(x)] =
¢ME [he(x°)] = h°, it is clear that he = h
ade® =c. Asel 0 h°dj=handc® b
= ¢. Because x° satisfies the conditions of 8,
¢ < w (esp, ¢ = b < o) and h® =
E.[e?°h®(x°)] with t° = min(t : x° = D)
and ¥ = x°(#°). Now an unmodified path
starting at x(0) = & < b jumps out of [0, b)
landing at x = b; this means that t° = ¢ and
2° = e'x for e == 1/n for some n depending
upon the path, so e?ohe (k) b e?j(x) as
¢ 1 0 for a class of paths with as large a proba-
hility as desired, while on the complement of
this class ¢#°he(x°) = ¢#'%'°h = b. Be-
causch=j=8—1(§= b) and x = b, it
follows that

j(5) = i Egerehe(x)] =

Efe?j(x)] = Efec?h(x)] =h
for € < b, ie, j = h, and since b = ¢, the re-
sult follows after a moment’s reflection.
SUMMING up: if B = a =0, then h = &, while

if B> =0, then his convex with slope 0 =
he =1, h > (§—1)* to the left of some point
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1 <ce< o, h=§—1tothe right of c,
and h = E,[¢*h(x)] with t = min(t: x = ¢),
x=x(t),ande*h = 0if t = oo,

3 Two Examples

Consider the multiplicative Brownian motion
with drift x = exp[eb 4 8t] with ¢ > 0, 1) =
b(t) a standard (additive) Brownian motion,
and —o0 < & < o0, Ei(x) = exp[e¥/2 + )
50 @ = ¢°/2 + b, Because h = E, [¢*'h(x)]
with ¢ = min(t : x = ¢), it follows from a for-
mula of E. B. Dynkin® that if G is the gencrator
of [x, P.]:

GE(E) = (*/2)E" (§) + (0%/2 + d)EF(E),

then Gh = gh to the left of ¢. Now solve for
h = (¢ — 1)(&/c)* with an adjustable v and
find (/2)%* + by — 8 = 0, or, what is the
same,

y = —b/¢" 4 \/ﬁ/&f;ﬁb?tﬁ,\ 1

(the negative radical is excluded). 7 is actually
a function of «/¢* and p/o* alone. Besides the
above formula for h, the solution requires us to
lacate the corner ¢, Consider for this purpose G

o
expressed in terms of the new scale dt =
) 3
£ (E and the so-called speed measure e(dg)

— 217""§"'2‘"“2(IE ;

lim _ .
ci(e) = £2098) o fo(b) —fo(a)
e(d§)  hig  c(ab)

§(b) —&(a)

in this language, the fact that h is excessive is
expressed as he(dE) — ghe(dg) = 0, and
computing the mass that this distribution attril-
utes to a small neighborhood of & = ¢, one

finds ho(c) — ho(c) = ¢t@r [h*(c) —
h*(¢)] = 0, But h*(c) = 1, while h"(¢) = 1
since h is convex, 501 = h™(c) = (¢ — 1)y/c,
and solving for ¢ gives ¢ = v/(y — 1).

The reader can casily compute all desired prob-
abilities for this Brownian model with the help
of the formulas:

Px(t)edn] = (2rro’t)“”’e""”""’”n""’,‘dn/n,
Pyt edt] = (2no’t)3(E/c)-te" g0 une®

lg(&/c) c—(lgt/c),/'.’a’!o,z’dt’
and

3See ref, [1],
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Pelx(t)e dn, t < t] = Py[x(t)edn]
_(n/g)ﬁldn e—o”(/ﬁ‘ln (2n(ri‘t)-|/‘1

C-(lxn(/c")’/-:a’edn /s
in the first formula t, & v > 0, while in the sec-
ond and third, t > 0,0 < &,y < c.

Consider as a sccond example, the (multi-
plicative) Poisson process x = exp[p(at)1; p is
a standard (additive) Poisson process with
jump size 1 and unit rate, i.e., P [p(t) — p(0)
= n] = t"e'/nl, Ei(x) = exple(e — 1)t] so
a = g(e— 1). Given £ < ¢ with exit time t =
inf(t : x =+ &) and exit place x = x(t),

h(E) = Efe™h(x)] =

h(ck)
1—f/c ’
esp, h(E) = (& — 1)(1 — g/0)" for /e =
§ < ¢, and letting & ¢ ¢ and solving for ¢, one
finds ¢ = (1 — a/g)" hitself is a broken line
with corners at 2c (n = 0), esp, h*(c) =1

> h(e) = (¢ + a)(o + ).

f'ae“"dt ¢?h(ek) =
0

4 General Warrants

Now the problem is to find the smallest exces-
sive function h = (& — 1)* for the stopped
space-time motion

2(s) = [t —s,x(s)] (s=t)

= [0, x(t)] (s>1),

i.c., the smallest function h(t, &) = (£ — 1)

such that ¢™E[h(t — s, x(s))] 1 -]1(t, E) as
s 1 0 for cach (t, E)e[0, ) X [0, c0).

L. Define b = (5 — 1) S";"t

B [h"'(t — s, x(s))] for n = 1; then (£ —
I)'=h"th=Easnt e

and \* =

proor as before,

2. h is a concex function of & = 0 with slope
0=h=1,

PROOF as before.

3. his an increasing function of t = 0,
rroor: h’ is independent of t = 0, and

h"(t'-'y E) = Ssuél)tg c-ﬂuE‘[hn-l(t’ -5, X(S) )]

= P et [ — s, x(s))]

s=h
= hn(th E)

if h™' is an increasing function of t = 0; now
use induction and let n ¢ oo,

4. h is the smallest (space-time) excessive func-
tion = (& — 1)*; it is continuous from below
as function of t > 0,
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proor: h = ¢ B, [h(t — s, x(s))] (s =t) is
obvious, Now

glill,n() PR Jh(t — s, x(s))] =
: h(t—, &) = (§—1)"

for t > 0, and since

j=(E—1) (t=0)
= h(t—§) (t>0)

is a (space-time) excessive function =(E— 1),
it is cnough to prove that h is the smallest solu-
tion =(E — 1)* of j = ¢*E [j(t — s, x(s))].
But this is obvious.

500+ 8) = M h(LE) = (£ 1)~

proor: k(t, B) = B L(x(t) = 1) 1= (§—1),
and since k = E,[k(t—s, x(s))], e™LE, [k(t—
s, x(s))] increases to k as s 4 0, proving k = h.
Nowas t { 0,

k= e"8 — 1 + Ef1 —x(t),x(t) <1}

tends to § — 1if E > 1 But 0 = k(0+4, §) =
thll,"() Ei[(Ex — 1)'] is inereasing, so the proof

is complete.

6. h{ow, &) = tlTi“:Jg h(t, &) coincides with the

perpetual warrant.,

rroor: h( oo, E) is continuous (its slope falls
between 0 and 1), so ¢ ™E([h(20, x(s))] =
h( e, &) increases to h( o, &) as s 4 0, ie,
h( e, &) is excessive; that it is the smallest ex-
cessive function =(& — 1)* is obvious,

7.h = & — 1 to the right of some point
Il <e=rclt) <wford=1t= ¢, cisin-
creasing, ¢(t—) = ¢, and c(ec) < . h >
(8 — 1)* between ¢ and d = d(t) < 1. dis
decreasing, d(t—) = d, and () = 0. h =
Ototheleftofd. d=c¢'>0ifx=1¢.d=0
if x is a multiplicative Brownian motion.

rroor: use the information above and ¢(w) <
x (29).

8 h(t, 8) = L e ?'h(t — t, x)] if t is the
(space-time) exit time from the region

Ri0O<s=t0<E<ce(s)

and x = x(t) is the exit place (see Figure 1
for Rand t).

rroor: as before with some (mild) technical
complications.

5 General Warrant for a Multiplicative

Translation with Absorbtion
Consider the motion of translation x = §

APPENDIX

R

v
g0

Figure 1

expl(a 4 8)t] with absorbtion at a rate 8 =0,
ie., let

l)l[x — Eu(mb)(] — c-él — 1 — Pl[x — 0]’
and let us prove that

h(t, E) — c—(ﬁcb)l[g c(«ub)k - l]'

= (§/c)(c—1)

withy = (8 + 8)(a 40)"andc = ¢(w) =
vy — 1)

2.9 implies that the perpetual warrant is a
solution of

e PORE @] = ¢ E[h(x)] = h(E)

for t = 0 and Eexp[(a + d)t] = ¢, or, and
this is the same, a solution of

Gh(E) = &(a 4 0)W'(E) — dh(E) = ph(E)

(8 <)
Now solve and find h(E) = (E/¢)'(c — 1)
with v = (B 4+ 8)(a 4 8)" and an unknown
corner ¢ = 1, Because h(¢) = 1, (v/¢)(c —
1) = 1, while from the fact that h is excessive,
it follows that

E =¢ C-(m&u
Cc—(moné E =¢

c-(ﬂob)l[g C(uoon — l_l —

PEIh(x)] =h(E) =&—1  (£=¢),

and this cannot hold for & = ¢ and t { 0 unless
(v/¢)(c —1) =1, ic, unless ¢ = y(y — 1)
= (B4 0)(B—a)™

As to the general warrant, if € = ¢(t), then

c—(ﬂnd)\[E e(u.o)n — 1] —

e PEfh(t—s, x(s))] =h(t,E) =8 —1,

and solving for & = c¢(t), one finds c(t)
vy = 1) =c=c(o0) = c(t), ic, c(t)
c(o). Now if cexp[—(a + d)t] =E =¢
and if s = t is chosen so that € exp[(a + 8)s]
= ¢, then h{oo, E) = h(t, &) = ¢®E[h(t—
s, x(s))]

— —(ﬂoO)lh[t — S, C(uoo)s] —
B (c—1) = (&/c)(c—1),

m oy
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so that h(t, &) = (&/¢)*(c — 1), while if
£ = cexp[—(a + 8)t], then in view of 4.8,

h(t, §) = e E[h(t -+ 5, x(s))] =

0—(ﬁodlill(t —s, Ec(nnd)s)
C-(ﬁwnh(o_l_’ E c(uobn) (S — l—)
c‘“““"[E c(nobll — 1]4»,

1]

as stated. Note that h'(t, &) jumps at §exp[(a
4 8)i] = land c butnotat & = ¢,

6 General Warrant for a Multiplicative
Brownian Motion with Drift

Now let us compute as far as possible the gen-
cral warrant for the multiplicative Brownian
motion x = exp[eb + dt] of 3, granting that
¢ and the left slope h=(t, ¢) are continuous, that
¢(04) = 1, and that ¢ has a continuous slope
¢* for t > 0, Consider

GI(§) = (o°/2)EF" (§) +
(/2 + 0)EF (&) = f2(d§)/e(dE)

as in 3 and let us prove that h is a solution of
the free boundary problem:

(G — 9/0t)h = gh on the region
Rit>0,0<E<e(t)

h(t,04) =0 (t>0)
h(0+,§) = 0 (sZ1)
h(t,e—) =c¢—1 (t>0)
h(t,c) =1 (t>0).

R (or, what is the same, the free boundary ¢)
is unknown, and it is the extra (flux) condition
h= = 1 that makes it possible to solve for both
R and h. 4.8 implies the partial differential
cquation, and the evaluations of h on the 3
sidles of OR follow from 4.1, 4.5, and 4.7, As to
the flux condition h-(t, ¢) = 1,

S o 6, d8) — phe(ds)] =
§ e 8 —n 01 etag)

is an expression of the fact that h is (space-
time) excessive, and adding up the masses that
these distributions attribute to the non-over-
lapping boxes:

k—1 k k-1 k
—_———=t=— -——)égéc(—)
n n n n
for k = m, one finds
k

s S (o))

k=m "
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k=m D

k—1 -
h (——-, E) 48 J hdt] c(dg)
n Aot

S )

k=m

-
r o I

Because ¢ is continuous, it follows on letting
n{ oo that

c(dg).

Jdte e L — e (t e)] = 0,
0

and since h=(t, ¢) = 1 is also continuous, the
flux condition h= = 1 is proved.

Now transform the free boundary problem
by the substitution h = e?w(t, o"'[lg & +
ot]):

ow 1 2w

—_——— on the region:

ot 9 o

t>0, —0 <E<b=o"[lgc 4 Bt]

w(t,—n) =0 (t>0)
w(04,8) =0 (£=0)
w(t,b—=) =¢"(c—1) (t>0)

w(t, b) = cf'c (t >0).

Because

w(t, £) = ¢"h( o, ¢"&®) =
cMle( e )—l]c( o ) glet-on)

to the left of & = b, it is legitimate to take a

A
Fourier transform w(t, ) = f° e'w(t, &)dE.

A
¢(04) = 1 implies w(0+4,.) = 0; this leads
at once to

A
W(t, .n) — "Ic-v;(t-u)/'zcﬁn
Yo

Olnb[,_c_ + (b-_l—"-)(c—- 1)](]5
2 2 ’

or, what is the same,

fl e-[(oh(()—b(-)]nlﬂ(t-u)
Yo

e
Vea(t—s) Z() b

c , E 4 b(t) —b(s) .

[E"'[b T 2(t—s) ](c_.l)]dh
=w(tE4+b) (E<0)

=0 (5> 0),
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and from this it is possible to deduce an infinite
serics of integral equations for the free hound-
ary ¢ by a) evaluation at § = 04, b) evalu-
ation of the slope at & = 04, elc.:

2
¢ 1 vt c-[h(()-l:(l)] 12(t-8)
@Aty

a) = —
2 °\/2r(t—3)

[_o § [1,-_"“""‘s’]<c_1>]ds,

At —s)
c ¢ c-u.u)—h(n)]"/u(n-n)
S
2 Y0 2a(t—s)
[l)‘ 4+ ple—1)—

etc.

I. 1. Kolodner* treated such free boundary
problems and derived a) and b) hy a more
complicated method. Unfortunately, it is not
possible to obtain explicit solutions, though ma-
chine computation should be feasible; as a
matter of fact, even the existence and unique-
ness of solutions is still unproved.

4Sco Ref. 141,
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